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GUI test migration aims to produce test cases with events and assertions to test specific functionalities of a target app.
Existing migration approaches typically focus on the widget-mapping paradigm that maps widgets from source apps to target
apps. However, since different apps may implement the same functionality in different ways, direct mapping may result
in incomplete or buggy test cases, thus significantly impacting the effectiveness of testing the target functionality and the
practical applicability of migration approaches.

In this paper, we propose a new migration paradigm (i.e., the abstraction-concretization paradigm) that first abstracts
the test logic for the target functionality and then utilizes this logic to generate the concrete GUI test case. Furthermore,
we introduce MACdroid, the first approach that migrates GUI test cases based on this paradigm. Specifically, we propose an
abstraction technique that utilizes source test cases from source apps targeting the same functionality to extract a general test
logic for that functionality. Then, we propose a concretization technique that utilizes the general test logic to guide an LLM in
generating the corresponding GUI test case (including events and assertions) for the target app. We evaluate MACdroid on
two widely-used datasets (including 31 apps, 34 functionalities, and 123 test cases). On the FrUITeR dataset, the test cases
generated by MACdroid successfully test 64% of the target functionalities, improving the baselines by 191%. On the Lin dataset,
MACdroid successfully tests 75% of the target functionalities, outperforming the baselines by 42%. These results underscore
the effectiveness of MACdroid in GUI test migration.

CCS Concepts: • Software and its engineering → Software testing and debugging.

Additional Key Words and Phrases: Test migration, Functional GUI testing, Large language model

1 INTRODUCTION
Graphical User Interface (GUI) testing is common for testing functionalities of mobile apps [22, 56, 75]. A

GUI test case is composed of some ordered events and assertions [25, 52]. These events are designed to probe
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the functionalities of GUI widgets. These assertions verify whether the outcomes of the events align with
developers’ expectations. Developers typically develop multiple functionalities (e.g., sign-in) within an app.
The target functionality of a GUI test case refers to the specific functionality that the test case is designed to
verify. Automatic generation of GUI test cases is challenging due to the limited understanding of the specific
functionality in target apps. Consequently, GUI test cases are still predominantly crafted manually, which is
time-consuming and labor-intensive [23, 31, 54, 66]. To reduce the manual effort in writing GUI test cases, several
migration approaches [25, 52, 61, 84] have been proposed. These approaches migrate GUI test cases from a source
app to a target app by mapping widgets that are semantically similar.

Despite advancements in migration approaches, the migrated test cases often remain incomplete or contain
bugs [86], making them challenging to directly use in real-world scenarios. This issue arises because existing
migration approaches follow the widget-mapping paradigm, which involves mapping widgets from source test
cases (i.e., test cases for source apps) to target test cases (i.e., test cases for target apps). However, different
apps may implement the same functionality in different ways. Source widgets (i.e., widgets in the source apps)
may not be similar to target widgets (i.e., widgets in the target apps). As a result, test cases generated based on
the widget-mapping paradigm might lack some necessary widgets, leading to an incomplete test of the target
functionality. For example, the sign-in functionality in some apps might require an email and a password, while
other apps might require a phone number and a password. Directly migrating individual test cases may not
completely test the target functionality of the target app.

Considering the significant disparity between test cases generated by existing migration approaches [25, 52,
61, 84] and their target functionalities, it is crucial to propose a new migration paradigm capable of generating
high-quality GUI test cases. Inspired by existing research [25, 52], we observe that although different apps may
have variations in their specific implementation of the same functionality, the underlying logics for the target
functionality are typically similar. In other words, test cases targeting the same functionality tend to follow
similar test logics. For instance, the typical test logic for the sign-in functionality of a shopping app involves
navigating to the sign-in state, completing all the required fields, clicking the sign-in related button, and verifying
the correct display of user information. This test logic abstracts away the implementation details of specific
mobile apps (e.g., using email or phone number) while preserving the core concept of the testing process, making
it an effective guide for generating test cases related to the target functionality.

Based on the preceding observation, we propose a new migration paradigm, the abstraction-concretization
paradigm, which first abstracts a general test logic of the target functionality from multiple source test cases,
and then uses this logic to guide the generation of concrete GUI test case for the target app. In the abstraction
phase, we eliminate the app-specific details, focusing solely on the general test logic of the target functionality.
In the concretization phase, we apply the general test logic to generate the concrete target events and assertions.
Additionally, the emergence of large language models [6, 7, 13](LLMs) brings new opportunities for GUI test
migration. With sophisticated semantic understanding and reasoning capabilities [30], LLMs have the poten-
tial to understand target functionality and tackle the complexities associated with test logic abstraction and
event/assertion generation, thereby enhancing the effectiveness of GUI test migration.

Specifically, we introduce a two-stage approach namedMACdroid (i.e.,Migrating GUI test cases viaAbstraction
and Concretization). First, we propose an abstraction technique that utilizes source test cases to extract a
general test logic. Initially, we extract an individual test logic as a sequence of structured test steps for each
source test case. These test steps retain only functionality-related information, facilitating adaptation to new apps.
Subsequently, we integrate the individual test logics from multiple source test cases into a sequence of structured
test steps, forming a general test logic. The general test logic summarized from multiple test cases provides a
comprehensive perspective on the target functionality, facilitating complete testing of the target functionality.
Second, we propose a concretization technique that utilizes the extracted general test logic to guide an LLM
in the step-by-step concretization of the target test case. Initially, we identify a set of privileged events and
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GUI Test Migration via Abstraction and Concretization • 3

assertions derived from source test cases, which may be relevant to testing the functionality of the target app.
To improve accuracy, we design a priority strategy that selects events and assertions from this privileged set,
rather than directly selecting from all operable widgets in the target app. This restriction narrows the candidate
set, enhancing the accuracy of event and assertion selection. Moreover, we design a validation mechanism that
identifies and repairs potential inaccuracies by comparing the general test logic and the output of the LLM,
ensuring the accuracy and reliability of the generated test case.

We conduct a comprehensive evaluation to analyze the effectiveness of MACdroid using 31 real-world apps,
34 functionalities, and 123 test cases from the FrUITeR dataset [10] and the Lin dataset [14]. We compare
MACdroid with the state-of-the-art migration approach TEMdroid [84] and the state-of-the-art generation
approach AutoDroid [78] on these datasets. On the FrUITeR dataset, the test cases generated by MACdroid
successfully test 64% of the target functionalities, representing a 191% improvement over the baselines. On the
Lin dataset, MACdroid successfully tests 75% of the target functionalities, outperforming the baselines by 42%.
We also evaluate the effectiveness of MACdroid’s main techniques for the GUI test migration. Overall, these
results demonstrate that MACdroid is effective in GUI test migration for industrial apps.

This paper makes the following main contributions:
• We propose a new migration paradigm (i.e., the abstraction-concretization paradigm), and introduce

MACdroid, the first approach that follows this paradigm to migrate GUI test cases.
• We propose a novel technique for automatically abstracting a general test logic from source test cases for

the target functionality.
• We propose a novel technique for concretizing GUI test cases that focuses on accurately selecting events

and assertions for the target apps.
• We conduct an empirical evaluation using real-world apps, demonstrating the effectiveness of MACdroid.

The source code of MACdroid is publicly available [15].

2 ILLUSTRATIVE EXAMPLE
Figure 1 depicts the test process for the functionality of “Add and remove an item” in a To-do app based on

the test case from the Lin dataset [14]. This test case is designed to validate whether a user can successfully
add a to-do item in the target app and subsequently remove it after finishing this item. We use this example to
illustrate the motivation of this paper. We also use this example to illustrate the methodology of MACdroid in the
following sections.

S1 S2 S3 S4 S5

E2

A2

E0

E3

sample to do A1 E4 DELETE E5

E1: Click ''Add'' button

E2: Input ''sample to do'' in 
the ''Title''
E3: Click ''Add confirm'' button A1: ''sample to do'' in the state

E4: Swipe right ''sample to do'' E5: Click ''DELETE'' button A2: ''sample to do'' not in 
the state 

E1

Fig. 1. The test process of “Add and remove an item” in a To-do app

Specifically, associated with five GUI states (i.e., S1 to S5), the test case includes five events (i.e., E1 to E5) and
two assertions (i.e., A1 and A2). The test process is that a user clicks the “Add” button (E1), inputs “sample to
do” in the “Title” box (E2), and clicks the “Add confirm” button (E3). One assertion (A1) checks for successfully
adding one item by verifying that “sample to do” appears in the new state (S3). The user then swipes right on the
“sample to do” item (E4) and clicks the “DELETE” button (E5). The other assertion (A2) checks for successfully
removing this item by verifying that “sample to do” no longer appears in the new state (S5).
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Fig. 2. Overview of MACdroid

We evaluate the effectiveness of existing approaches on the preceding example. Specifically, we select the
state-of-the-art test case migration approach, TEMdroid [84], and the state-of-the-art functional test generation
approach, AutoDroid [78]. However, neither approach can fully test the target functionality. This limitation
arises because the specific implementations of the same functionality vary across apps, making it difficult to
comprehensively test the target app’s functionality by directly migrating or generating test cases. Furthermore,
incorrect migrations or generations result in erroneous events and assertions, preventing these test cases from
successfully testing the target functionality.

The results obtained by existing approaches cannot be directly used in industry and still require manual
modification. Given the substantial disparity between the test cases generated by existing approaches and their
corresponding target functionalities, it is imperative to propose a new migration paradigm capable of generating
high-quality GUI test cases.

3 MACDROID
Given a target app and a set of source test cases that test the same functionality in source apps as inputs,

MACdroid (whose workflow is shown in Figure 2) generates a target test case to test the target functionality
based on two components. The first component is the Abstractor component. This component aims to extract
a general test logic based on multiple source test cases (see Section 3.1). The second component is the Con-
cretizer component. This component aims to concrete target test cases according to test generation (including
Event/Assertion Matching and Event/Assertion Completion) and test validation (see Section 3.2).

3.1 Abstractor
Given the source test cases for the target functionality, the Abstractor component (see Figure 2) aims to extract

a general Test Logic (abbr. TL) for this functionality. The variability among these source test cases presents a
challenge in extracting the test logic for the target functionality. To address this challenge, Abstractor includes
three modules: TL Extraction, TL Summarization, and TL Validation.

In the TL Extractionmodule, MACdroid extracts a sequence of structured test steps from each source test case,
referred to as an individual test logic (see Section 3.1.1). This step-based format facilitates easier comprehension by
LLMs [77]. Note that, during this process, app-specific details are isolated to emphasize only functionality-related
information, thereby enhancing adaptability across different apps.

ACM Trans. Softw. Eng. Methodol.
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You are a designer to summarize the general test logic to test [Add and 
remove an item] functionality for [To-do] apps. Below are test logics for 
different [To-do] apps need to be summarized.

Concrete test logic from A To-do app
Step 1: (Event) Edit a widget "new list name" with "sample to do"
Step 2: (Event) Click a widget "add list button"
Step 3: (Assertion) Check a widget "sample to do" in the state
Step 4: (Event) Long press a widget "sample to do"
Step 5: (Event) Click a widget "delete title"
Step 6: (Event) Click a widget "yes button"
Step 7: (Assertion) Check a widget "sample to do" not in the state

Concrete test logic from B To-do app
…

Please generate the general test logic for testing [Add and remove an item] 
functionality for [To-do] apps.
1. Please output the general test logic covering all different steps without app 
specific information. 
2. Please generate the general test logic according the preceding format.

General test logic for testing [Add] functionality for [To-do] apps.
Step 1: (Event) Click or long press a widget "Add"
Step 2: (Event) Edit a widget "Item" with "sample to do"
Step 3: (Assertion) Check a widget “sample to do" in the state
…

Task Description

Input Object

Output Requirement

Output Example

Fig. 3. A prompt example used by TL Summarization

After extraction, the individual test logic for different source test cases may vary. This is because different
apps may implement the same functionality differently, the individual test logic for each source test case may
be different and may only cover partial test steps for the target functionality. The TL Summarization module
addresses this problem by creating a general and comprehensive test logic suitable for diverse apps. Since
LLMs have demonstrated the capabilities to understand and summarize information, this step adopts an LLM to
summarize a general and comprehensive test logic based on commonalities and differences among the individual
logics (see Section 3.1.2). Furthermore, recognizing potential inaccuracies in LLMs’ outputs (e.g., hallucination
issues [63, 80] and comprehension biases [29, 39]), the TL Validation module employs a rule-based method to
ensure the quality of the summarized test logic (see Section 3.1.3). Finally, Abstractor outputs a refined, general,
and comprehensive test logic for the target functionality, which could be applied to various apps.

3.1.1 TL Extraction. We have two considerations for extracting the test logic from each source test case. First,
standardizing the input with a consistent format and terminology makes it easier for an LLM to understand the
specific task and eliminate ambiguities arising from diverse expressions [32, 41, 83]. Thus, for source test cases
from different test frameworks (e.g., Appium [3] and Selenium [16]) and different programming languages (e.g.,
Python and Java), we represent the extracted test logic in a unified step-based structure. Second, source test cases
may include app-specific information (e.g., specific app environment or interaction methods). To enhance the
generalizability of the extracted test logic to new apps, we extract only the essential information from the test
cases and remove the app-specific information.

Based on the preceding two considerations, we represent a test logic using a sequence of ordered test steps {(41,
(01,…}. There are two types (i.e., event and assertion) of test steps. A test step with an event type (4 is represented
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as a tuple with four elements (4,F, 0, E), where 4 represents the event type;F represents a widget; 0 represents an
action to the widget; and E represents an optional input value. A test step with an assertion type (0 is represented
as a tuple with three elements (0,F, 2), where 0 represents the assertion type; F represents a widget; and 2

represents a condition to check the widget.
The “input object” of Figure 3 provides an example of using this module to extract an individual test logic from

a source test case. Specifically, MACdroid divides the source test case into a sequence of events and assertions
based on keywords (e.g., “gui”, “assertion”). For each event, MACdroid extracts the widget, the action (e.g., click,
edit, swipe, scroll, and long-press), and the optional input values. A widget typically has several attributes. To
represent a widget accurately and concisely, we only use the text, content-desc, and resource-id attributes. After
extracting these items, MACdroid structures each event as the template “(Event) [Action] a widget [Widget] with
[Value]” (e.g., “Step 1” of “Input Object” in Figure 3). For each assertion, MACdroid extracts both the widget
and its associated condition. After extracting these items, MACdroid structures each assertion as the template
“(Assertion) Check a widget [Widget] [Condition]” (e.g., “Step 3” of “Input Object” in Figure 3).

Table 1. An introduction of prompt template used in MACdroid

Part Aim

Task description Provide the overview goal of corresponding module.
Input Object Provide the input information to be processed by LLMs.
Output example Provide an example with the expected output formats.
Output requirement Provide the requirements and considerations for the output results.

3.1.2 TL Summarization. This module aims to summarize a general test logic from the extracted individual test
logics of multiple source test cases. Considering the powerful comprehension and summarization capabilities of
LLMs, as well as their adaptability to diverse and complex real-world scenarios, we guide LLMs in summarizing
test logics rather than relying on manual summaries or rule-based techniques. This approach enables LLMs to
capture the general logics of testing functionalities across a broader range of scenarios with full automation,
thereby eliminating the need for manual intervention. To ensure that LLMs have a deep understanding of the
logic summarization task, we design a clear and structured guidance mechanism. Specifically, we design a prompt
with four parts, i.e., task description, input object, output example, and output requirement to interact with an
LLM. The aims of these four parts are illustrated in Table 1. Figure 3 is an example of the prompt input of the TL
Summarization module.

Task description. This part provides an overview guidance for the LLM to understand the aim of this module,
which is summarizing multiple individual test logics into a general test logic. For different test cases, we only
change the functionality to be tested and the category of the target app, which are highlighted in blue (see
Figure 3). Note that, the functionality to be tested can be extracted from the function name of source test cases.
The category of the target app can be extracted from the app location (e.g., Google Play Store [12] or F-Droid [8]).

Input object.This part displays the individual test logic extracted from each source test case by the TL Extraction
module, which will be summarized.

Output example. One-shot prompting, which enables LLMs to acquire task-specific input-output formats, has
demonstrated superior performance compared to zero-shot setups [19, 28]. Thus, we use one-shot prompting in
this prompt design. To illustrate various types with shorter texts, we design an example with all the different
output formats.

ACM Trans. Softw. Eng. Methodol.
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Table 2. An introduction of validation rules

Rule Aim Component

Irrelevant step Verify whether the general test logic contains any irrelevant test steps.
AbstractorMissing step Verify whether the general test logic lacks any necessary test steps.

Ambiguous action Verify whether the actions in the general test logic align with the required actions.

Incorrect type Verify whether the matched types align with the types of the specific test steps.

Concretizer
Irrelevant matching Verify whether the matched events and assertions belong to the privileged set.
Completion checking Verify whether the generated events and assertions of the specific test steps are complete.
Incorrect format Verify whether the output test cases align with the required formats.

Output requirement. This part outlines two output requirements that guide the LLM in effectively summa-
rizing the general test logic. Specifically, the first requirement aims to enhance the comprehensiveness and
the generalizability of the general test logic. Note that, a single test step can be implemented in multiple ways
(e.g., through different actions). For example, in different apps, deleting an item can be implemented in various
actions, such as swiping or clicking the item. In this situation, the LLM should use “or” to align these various
implementations within one test step. The second requirement focuses on improving the quality of the general
test logic by including all important information while remaining concise. Specifically, this requirement ensures
that the outputs of the LLM follow the event structure (i.e., “(Event) [Action] a widget [Widget] with [Value]”) and
the assertion structure (i.e., “(Assertion) Check a widget [Widget] [Condition]”) as outlined in Section 3.1.1. This
structured template makes the general test logic semantically clear within the word limit of LLMs inputs [6, 13].

3.1.3 TL Validation. The process of summarizing multiple individual test logics into a single general test logic
involves combining test steps that achieve the similar objectives and also adding test steps related to achieve
different objectives. This process may result in the general test logic being longer than a single individual test
logic but not excessively long, as these individual test logics target at testing the same functionality and share
several common test steps. However, due to hallucination issues of LLMs, outputs of LLMs may be irrelevant or
fabricated with the input data [63, 80] even if the output requirements are included. To address these potential
issues and ensure the quality of the general test logic, we design three rules to identify common issues related to
the TL Summarization module. Subsequently, for each issue, we generate corresponding feedback for the TL
Summarization module to re-summarize the general test logic accordingly. The first three rows of Table 2 provide
an overview of the validation rules.

Irrelevant step. The general test logic generated by the TL Summarization module may not only include a
summary of the test steps from the source test cases but also create irrelevant test steps. We use the longest
source test case as a reference, and use "0G_A0C8> to measure whether the general test logic remains within a
reasonable length. If the generated test logic is too long (i.e., too many test steps), it may contain redundancy and
irrelevant steps.

Specifically, MACdroid calculates the ratio of the number of test steps in the general test logic to the number
of test steps in the longest source test case. If this ratio exceeds "0G_A0C8> , irrelevant steps may be introduced.
To repair this issue, we design a feedback prompt as “The number of your summarized test steps is more than the
maximum number of test steps, which may introduce irrelevant test steps. Please re-summarize it”. This feedback
prompt is then sent to the TL Summarization module for re-summarization.

Missing step. The general test logic generated by the TL Summarization module may lack necessary test steps,
resulting in an incomplete summary. We use the shortest test case as a reference for validation. This is because
general test logic is derived by summarizing the individual test logics from multiple test cases. The process
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involves merging similar steps and supplementing distinct ones. Therefore, it is rare for the general test logic to
be shorter than the corresponding shortest test case.

Specifically, MACdroid compares the number of test steps in the general test logic. If the generated general
test logic is shorter than the shortest test case, that means the general test logic may lack some necessary test
steps. To repair this issue, we design a feedback prompt to the TL Summarization module for re-summarization.
The feedback prompt is “The number of your summarized test steps is less than the minimum number of test steps,
which may miss some necessary test steps. Please re-summarize it.”.

Ambiguous action. The actions specified in the general test logic generated by the TL Summarization module
may differ from the expected actions, increasing the difficulty for the LLM to understand the functionality in the
subsequent stage. For instance, the click action can be described in various ways, such as “tap a screen” or “touch
by finger”, all of which are same semantics. However, these diverse descriptions increase the difficulty for LLMs.
To mitigate this issue, we standardize the description of the click action to consistently use “click”, as outlined
in the “output example” (see Figure 3). This standardization reduces ambiguity, and enhances the accuracy and
consistency of the LLM’s understanding. To identify this issue, MACdroid compares the actions generated by the
TL Summarization module with the expected actions outlined in the “output example”. Specifically, for events,
the expected actions include “click”, “edit”, “swipe”, “scroll”, and “long-press”. For assertion, the expected action is
“check”. If MACdroid identifies discrepancies between the generated actions and the expected actions, it then
generates a corresponding feedback prompt to the TL Summarization module. The feedback prompt is as follows:
“The [Step] does not include an action that appears in the output example. Please select one action in the output
example to re-describe this step”.

3.2 Concretizer
The Concretizer component aims to generate a test case for the specified functionality of the target app,

utilizing the general test logic and the source test cases. The test logic summarized by the Abstractor component
is general, which cannot be directly utilized as a test case for the target app. To concretize an executable test case,
MACdroid needs to concretize each test step in the general test logic with the specific events and assertions in
the target app. However, it is challenging to select appropriate events and assertions due to the large number of
candidates in the target app. For example, the BBC News [4] app includes more than 30 GUI states, and each
state has an average of 60 operable widgets.

To address this challenge, we propose to first construct a priority strategy that guides the LLM to select events
and assertions from a smaller set with higher priority, which is more relevant to the target functionality. If this
selection fails, we then guide the LLM to select events and assertions from a larger set with lower priority. This
priority strategy restricts the selection set, enhancing the accuracy of selecting events and assertions. Furthermore,
considering potential inaccuracies using LLMs, we propose to validate the events and assertions selected by the
LLM, thereby improving the effectiveness of the generated test cases to test the target functionality.

To implement the preceding idea, Concretizer involves three key modules as depicted in Figure 2: the Even-
t/Assertion Matching, Event/Assertion Completion, and Test Validation module. Specifically, MACdroid utilizes one
of existing migration approaches [25, 52, 84] to obtain a set of events and assertions derived from the source
test cases. These events and assertions, referred to as privileged events and assertions, are relevant to test the
functionality of the target app. Based on our designed priority strategy, MACdroid initially matches each test step
in the general test logic with these selected events and assertions using the Event/Assertion Matching module
(see Section 3.2.1). If the matching fails, MACdroid dynamically explores the target app to identify appropriate
events and assertions using the Event/Assertion Completion module (see Section 3.2.2). Additionally, the Test
Validation module (see Section 3.2.3) plays a crucial role in validating and correcting any errors that arise. These
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You are a matcher to match the general test logic for [Add and remove an item] 
functionality of [To-do] app and the privileged events and assertions.  Please 
match the appropriate events and assertions for the given step.

Test Step
Step 1: (Event) Click a widget “add to do item” or “new task”

Privileged events and assertions
A.1: Click a widget “add” 
A.2: Edit a widget “title edit text” with “sample to do”
…

Please match the privileged events and assertions with the given step for 
testing [Add and remove an item] functionality of [To-do] app.
1. Please ensure consistency of step types. 
2. If there are no privileged events and assertion that match this step, return -1.

Step 1: A.1
Step 1: -1

Task Description

Input Object

Output Requirement

Output Example

Fig. 4. A prompt example for Event/Assertion Matching

three modules collaboratively work to select appropriate events and assertions from the target app, ensuring the
generated test cases are accurate and effective.

Note that, since existing migration approaches may generate incorrect events and assertions or omit essential
ones [86] when migrating GUI test cases, we only treat the events and assertions generated by existing migration
approaches as privileged but not as the ground-truth.

3.2.1 Event/Assertion Matching. This module aims to match the privileged events and assertions with test steps
in the general test logic. By first selecting events and assertions from the small privileged set, rather than
from the entire target app, we enhance the LLM to accurately select appropriate events and assertions. By
selecting events and assertions based on each structured and concise test step, rather than a block of texts for the
whole functionality, we aid the LLM in systematically deconstructing the target functionality and incrementally
generating test cases.

Specifically, we utilize the LLM to select events and assertions for each test step in the general test logic. The
prompt structure used in this module also follows four parts, as shown in Table 1. Figure 4 is an example for this
module.

The main differences between the prompt design in the TL Summarization module and this module are the
“input object” and “output requirement”. First, input object displays the test step to match and the privileged events
and assertions that have not been matched by the preceding test steps. Second, output requirement emphasizes
two requirements. Specifically, the first requirement emphasizes that not every test step needs to match an event
or assertion of the privileged events and assertions because these privileged events and assertions may not fully
cover the target functionality. Thus, the LLM should return an unmatched indicator (e.g., “-1” in our design) if no
corresponding event or assertion is found. The second requirement emphasizes the need for type alignment. For
example, a test step with the event type should only match events but not assertions, thus avoiding incorrect
matching by the LLM.
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You are a tester to test [Add and remove an item] functionality for a [To-do] 
app. You have already completed some steps. You need to select events for the 
step – (Event) Click a widget "delete task".

Completed Events
- (Event) click a widget "add"
…
Current State with Candidate Events (with Event ID)
- Back to last state (0);
- a widget "default text group" that is clickable (1), editable (2);
- a widget "1 text count" that is clickable (3),  editable (4);
- a widget "setting" that is clickable (5);
- a widget "delete button" that is clickable (6);
…

Please select one event in the "Current State with Candidate Events" to 
complete the step –(Event) Click a widget "delete task".
1. Please do not suggest any events that I have already used 
2. Please only return the Event ID.

--Event ID: 1

Task Description

Input Object

Output Requirement

Output Example

Fig. 5. A prompt example for Event/Assertion Completion

3.2.2 Event/Assertion Completion. This module aims to select events and assertions in the target app when the
privileged events and assertions cannot be matched to a given test step. The key parts are state description, event
selection, and assertion generation.

State description. To select events and assertions, the LLM needs to understand the semantics of GUI widgets
and the actions that these widgets are capable of implementing in the target app. MACdroid converts the current
GUI state of the target app into a natural language description to aid the LLM’s understanding. For each widget,
MACdroid lists the widget semantics and the associated actions. The widget semantics are represented by three
key attributes, i.e., text, content-desc, and resource-id. For all widgets within a given state, MACdroid organizes
them according to their spatial locations, adhering to a trajectory from the top-left to the bottom-right of the
state. This sorting maintains a natural and intuitive flow in the state description. For instance, the “input object”
of Figure 5 provides the state description for the “S4” state in Figure 1.

Event selection. Given a test step with event type (referred to as an event step) from the general test logic and
the current state, MACdroid selects the appropriate events in the target app to complete this step with the LLM.
Figure 5 is an example prompt for this part. The “Input Object” of this prompt not only provides a description of
the current state but also displays the selected events from the preceding steps to avoid duplicated selection.

Specifically, MACdroid first generates a prompt (e.g., Figure 5) including an event step and a state description
of the current state to the LLM. The LLM returns an event ID from the state description. MACdroid then executes
the event corresponding to that event ID for updating the current GUI state and performs a test validation, as
detailed in the Test Validation module (see Section 3.2.3). When the test validation passes, MACdroid incorporates
the event into the GUI test case. Note that, if the LLM cannot select the appropriate events for the current test
step after trying "0G_B4;42C8>= events (i.e., the test validation cannot pass), MACdroid skips this test step. This
discrepancy may arise because the extracted general test logic is designed to be broadly comprehensive for the
functionality, aiming to cover various possible implementations. However, the specific implementation of the
target app might not incorporate every step outlined in this general test logic.

Assertion generation. An assertion includes a widget and a condition. GUI testing primarily involves two types
of conditions [25, 52]. The first type involves checking the presence of a widget in the current state (e.g., A1 in
Figure 1), while the second type involves checking the disappearance of a widget in the current state that appears
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You are a tester to test [Add and remove an item] functionality for a [To-do] 
app. You have already completed some steps. You need to choose a widget to 
help complete the step  -- (Assertion)  Check a widget “sample to do” in the 
state.

Completed Widgets
- a widget “add’’
…

Current State with Candidate Widgets (with Widget ID)
- Back to last state (0);
- a widget “default text group” (1);
- a widget “1 text count” (2);
- a widget “setting” (3);
- a widget ”sample to do text thing” (4);

Please select one widget in the “Current State with Candidate Widgets” to help 
complete the step -- (Assertion)  Check a widget “sample to do” in the state.
1. Please do not suggest any widgets that I have already used 
2. Please only return the Widget ID.

--Widget ID: 1

Task Description

Input Object

Output Requirement

Output Example

Fig. 6. A prompt example for widget selection

in a preceding state (e.g., A2 in Figure 1). As the widget for the second type of assertions does not appear in the
current state, we cannot select assertions in the same way as event selection.

To address this problem, given a test step with the assertion type (referred to as an assertion step) from the
general test logic and the current state, MACdroid first selects the appropriate widget in the target app and
utilizes the widget to generate the corresponding assertion. Unlike event selection, this prompt removes the
widget-associated actions, allowing the LLM to focus solely on the widget semantics. A related prompt is Figure 6.

Specifically, for the first type of condition, MACdroid inputs the current state and the current test step into the
LLM. The LLM then selects the appropriate widget based on the step description. For the second type of condition,
since the widget is not present in the current state but appears in a previous state during the generation of this
GUI test case, MACdroid backtracks from the current state to the previous state to identify the widget. After
MACdroid identifies the appropriate widget, it generates a corresponding assertion based on the widget and
the condition. If the LLM cannot select the appropriate widgets for the current step after trying "0G_B4;42C8>=
widgets, MACdroid skips this step.

3.2.3 Test Validation. Both the Event/Assertion Matching module and Event/Assertion Completion module
utilize LLMs, making their outputs susceptible to the inaccuracies inherent in LLMs. To address these issues, we
design four rules to identify common issues in these modules and provide feedback to LLMs for repairing them.
The overview introduction is shown in Table 2.

Validation on the Event/Assertion Matching module. We check the type and the content of the outputs in
this module. There are two common issues (i.e., incorrect type and irrelevant matching) in this module.

Incorrect type. The LLM may incorrectly match assertions with an event step, or vice versa, leading to type
faults. To identify this issue, MACdroid compares the type of each test step with the corresponding matched
events/assertions. Upon identifying this issue, MACdroid generates a feedback prompt to the Matching module
for repairing it. The feedback prompt is “The type of [step] and the corresponding events/assertions are not aligned.
Please re-match this step”.
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Irrelevant matching. The outputs of the Matching module may include the events and assertions that do not
appear in the privileged set. To identify this issue, MACdroid compares the outputs of the Matching module with
the privileged events and assertions. Upon identifying this issue, MACdroid sends the corresponding feedback to
the Matching module: “The [Step] matches new events and assertions. Please re-match this step”.

Validation on the Event/Assertion Completion module. Below are two common issues in this module.
Completion checking. One challenge in using LLMs for GUI test migration is the difficulty in determining the

completion of specific test steps due to the comprehension biases [78]. The LLM often continues to select events
and assertions for a test step without termination, resulting in the generation of irrelevant events that deviate
from the target functionality. To address this issue, we design a checking mechanism to validate whether the
current test step has been completed after each event or assertion selection. The checking prompt is “Based on
[Events] or [Assertions] you generated for [Step], I would like to confirm if [Step] has been successfully completed.
Please provide a response in just yes or no”. If this mechanism passes (i.e., a response of “yes”), MACdroid proceeds
to select events and assertions for the next test step.

Incorrect format. The outputs generated by the Completion module do not adhere to the required formats,
which may influence MACdroid to accurately locate the selected events and assertions. To identify this issue, we
compare the outputs of the Completion module with the format of the “output example”. The feedback is: “The
[Step] does not adhere to the required formats. Please re-generate this step with the provided format”.

4 EVALUATION
To evaluate the effectiveness of MACdroid, we aim to answer the following research questions:
RQ1: How effective is MACdroid compared with the baselines?
RQ2: How do MACdroid’s main techniques affect the GUI test migration?
RQ3: How efficient is MACdroid compared with the baselines?
RQ4: How useful is MACdroid in new apps?

4.1 Experimental Setup
Experimental objects. We select two widely-used datasets for evaluating GUI test migration, which are the

FrUITeR dataset [10] and the Lin dataset [14]. These datasets include a variety of complex industrial apps (e.g.,
ABC News [1] and Firefox Browser [9]), which may help to evaluate MACdroid in real-world scenarios. Both
these two datasets provide apps along with test cases for target functionalities written by developers (i.e., the
ground-truth test cases). The test cases in the Lin dataset contain both events and assertions, while those in the
FrUITeR dataset contain only events. We consider all the installable apps and executable test cases provided by
the two datasets as our experimental objects. For the entire evaluation experiments, we evaluate MACdroid and
related approaches using 31 apps, 34 functionalities, and 123 test cases. Table 3 presents basic statistics of our
experimental objects. Notably, different apps within the same category may share the same functionalities. For
example, the five apps in the Browser category all share two same functionalities, which require 10 corresponding
test cases.

Test case migration involves migrating source test cases from source apps to target apps within the same
app category. The source apps and target apps are distinct. In the experimental setup of MACdroid, we employ
an iterative methodology in which one app from a selected dataset is designated as the target app, while the
remaining apps within the same category of the same dataset are utilized as source apps for migration. For
example, there are five apps in the News category of the FrUITeR dataset (see Table 3). In our experiments, we
iterate over each of the five apps, designating one as the target app, while the test cases from the other four apps
are used as the source test cases and these four apps are used as the source apps. This iterative methodology
enables a comprehensive evaluation
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Table 3. Statistics of experimental objects

Dataset Category App Functionality Test Event Assertion Ave_Size

FrUITeR

News 5 12 42 112 - 22M
Shopping 5 12 39 207 - 20M

Total 10 24 81 319 - 21M

Lin

Browser 5 2 10 32 20 4M
To-Do 5 2 10 39 15 2M
Shopping 4 2 8 49 26 25M
Mail 2 2 4 14 12 6M
Calculator 5 2 10 33 10 2M

Total 21 10 42 167 83 7M

[Volunteer-1] Input a task of ''sample to do'' and select 
this item to remove it.
[Volunteer-2] Create a sample to do task in the to-do list 
by clicking the add button and inputting the sample to 
do  within the app and then delete it. 
[Volunteer-3] Click the add task button and fill the task 
title ''sample to do''. Then remove it from the task list. 

Fig. 7. An illustration of AutoDroid inputs

Baseline approaches. There are two categories of approaches that can generate GUI test cases, i.e., migration
approaches [25, 40, 52, 55, 84] and generation approaches [34, 74, 78, 79]. Existing migration approaches migrate
source test cases to target apps based on widget mapping. Generation approaches require a manually crafted
test logic as the input, and use LLMs to select appropriate events in the target app based on test logic. To
comprehensively evaluate MACdroid, we employ representative approaches from both categories. Specifically,
we compare MACdroid with TEMdroid [84] (the state-of-the-art migration approach) and AutoDroid [78] (the
state-of-the-art generation approach).

Note that, generation approaches (including AutoDroid) require manually crafted test logics as inputs, but
the FrUITeR and the Lin datasets do not provide this information. To compare MACdroid with AutoDroid on
these two datasets, we invite volunteers to write the necessary test logics. We mitigate the potential influence of
different writing styles on the effectiveness of AutoDroid by engaging three volunteers1 with industrial experience
in Android programming ranging from 3 to 5 years. For each volunteer, we provide the example descriptions
from AutoDroid, the target apps, and the ground-truth test cases for the target functionalities. Each volunteer
independently writes the descriptions for all the functionalities to be tested in the two datasets. Since AutoDroid
cannot generate assertions, we instruct the volunteers to omit descriptions related to assertions. For example,
AutoDroid utilizes three manually crafted test logics (see Figure 7) as the test logics of Figure 1.

Evaluation metrics. To evaluate MACdroid and the baselines, we design three metrics: executable-rate,
success-rate, and perfect-rate.

Executable-rate. This metric is calculated as the ratio of migrated test cases that can be fully executed ()4BC4G4 )
to the total number of migrated test cases for the target functionalities ()4BCC ).
1None of the volunteers are co-authors of this paper.
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Executable-rate = Testexe / Testt (1)
Perfect-rate. This metric is calculated as the ratio of migrated test cases aligning with the ground-truth test

cases ()4BC6C ) to the total number of migrated test cases for target functionalities ()4BCC ).

Perfect-rate = Testgt / Testt (2)
Success-rate. This metric is calculated as the ratio of migrated test cases that successfully test the target

functionalities ()4BCBD2 ) to the total number of migrated test cases for the target functionalities ()4BCC ). Note
that, migrated test cases being fully executable is a prerequisite for successful testing the target functionalities.
Additionally, migrated test cases that align with the ground-truth target test cases are a subset of test cases that
successfully test the target functionalities [53, 55, 86]. This adheres to the purpose of test migration, which seeks
to utilize migrated test cases as replacements for manually written target test cases.

Success-rate = Testsuc / Testt (3)
Test cases that successfully test one functionality are not necessarily unique. Consequently, for those test

cases that are fully executable but do not align with the ground-truth, we adopt a manual check to further
investigate whether these test cases still successfully test their target functionalities. These test cases may include
not only all the events and assertions of the ground-truth test cases but also additional events and assertions that
do not hinder the testing of the specific functionalities. Specifically, we invite the same three volunteers who
have written the test logics for the two datasets (see “Baseline approaches” of Section 4.1) to help check these
additional events and assertions. For each manual check, we provide the volunteers with the generated test case,
the additional events or assertions to be checked, the target app, and the corresponding ground-truth test case.
Each volunteer independently checks the events and assertions. In cases of disagreement, the volunteers discuss
until they reach a consensus.

Note that, the goal of test case migration is to generate test cases that successfully test a functionality of a
target app. However, as it is often not feasible to obtain all test cases that successfully test a specific functionality,
existing migration approaches [25, 40, 86] typically rely on pre-existing test cases from the datasets that are
designed to test the target functionality, referring to them as “ground-truth test cases”. The “ground-truth test
cases” serve as a reference set, representing a subset of test cases that successfully test the target functionalities.
Since it is impossible to exhaustively capture all the ground-truth for the target functionality of a given app, we
adopt a combined method that incorporates both automated and manual evaluation.
Parameter selection. MACdroid needs three parameters, which are "0G_A0C8> used in the Abstractor

component, "0G_B4;42C8>= used in the Concretizer component, and )4< used for LLMs. The determinations of
specific parameter values are described as follows.

First,"0G_A0C8> measures whether the generated test logic remains within a reasonable length. If the generated
test logic is too long, it may result in redundancy and irrelevant steps. To determine the value of "0G_A0C8> , we
compare the length of the general test logic to that of the longest source test case. Specifically, we set the minimum
value of "0G_A0C8> to 1, as general test logic typically encompasses or exceeds the scope of the individual source
test cases. Additionally, we set the maximum value of "0G_A0C8> to 2, as the individual test logics of source test
cases targeting the same functionality exhibit substantial overlap, with only minor variations between them.
Based on these considerations, we select "0G_A0C8> values of 1, 1.5, and 2 as reasonable ranges.

Second,"0G_B4;42C8>= defines the maximum number of attempts that the LLMmakes to select candidate events
for a given test step. The design of this parameter aims to balance testing effectiveness with cost, response time,
and the inherent uncertainty of LLM outputs. We set the minimum number of "0G_B4;42C8>= to 1, representing
the simplest scenario where the LLM tries only once for each test step. It minimizes cost and response time but
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may result in suboptimal selection. We set the maximum number of "0G_B4;42C8>= to 3 to control costs and
response time. Allowing more than three attempts would significantly increase the cost of LLM invocations and
lead to longer response times, which could negatively impact user experience in commercial applications. By
selecting 1, 2, and 3 as the range for "0G_B4;42C8>=, we achieve a balanced trade-off between cost, efficiency, and
the quality of the generated results.

Third,)4< is used to determine the appropriate temperature parameter for the LLM to generate higher-quality
test cases. In our experiments, we select the GPT series models [6, 13], which have an official temperature
parameter ranging from 0 to 2. At temperature 0, the LLM’s output is completely deterministic, which leads to
low variability. At temperature 2, the randomness of the outputs is maximized, leading to highly unpredictable
results. We aim to generate test cases that are both stable and flexible. Therefore, the extremes of 0 and 2 do not
meet our requirements. We select 0.4, 0.8, 1.2, and 1.6 as the candidate values for the temperature parameter.

In summary, the candidate parameters for "0G_A0C8> , "0G_B4;42C8>=, and )4< are {1, 1.5, 2}, {1, 2, 3}, and
{0.4, 0.8, 1.2, 1.6}, respectively. We randomly select 10% of the total apps in the Lin dataset as a validation set for
parameter selection. After conducting experiments with the validation set, we observe that setting "0G_A0C8>
to 1.5, "0G_B4;42C8>= to 3, and )4< to 0.4 yields the best effectiveness. Thus, all the experiments utilize this
configuration.
Common setting. We implement MACdroid in Python to support Android [2] apps. The experiments are

based on a Pixel 3 Emulator running Android 6.0. Some apps require installation in this setup, but MACdroid can
adapt to others. For the LLM that MACdroid utilizes in evaluation, we select two widely-used models: GPT-3.5 [6]
(i.e., the “gpt-3.5-turbo-0613” model used in this evaluation) and GPT-4.0 [13] (i.e., the “gpt-4-0613” model used in
this evaluation) to compare the effectiveness of utilizing different LLMs.

To assess the effectiveness of MACdroid, we conduct evaluations across different apps, baselines, and LLMs.
Specifically, we evaluate MACdroid, TEMdroid [84], and AutoDroid [78] on the FrUITeR dataset and the Lin
dataset, respectively. Both MACdroid and AutoDroid need to interact with an LLM, for which we evaluate the
effectiveness of these approaches using two different LLMs, i.e., GPT-3.5 [6] and GPT-4.0 [13]. Due to budget
constraints, we evaluate the effectiveness of MACdroid and AutoDroid on the two full datasets using GPT-3.5.
When using GPT-4.0, we randomly select half apps in each app category of the two datasets. Considering the
inherent randomness of LLMs, we run each experiment three times and report the average results.

4.2 RQ1: Effectiveness
We evaluate the effectiveness of MACdroid, and compare it with two baselines (i.e., TEMdroid [84], and

AutoDroid [78]) using the Executable-rate, Perfect-rate, and Success-rate on the FrUITeR dataset and the Lin
dataset, respectively. Additionally, we calculate the statistical significance using the Mann-Whitney U-Test [64]
and effect size using the Cohen’s d [24] between MACdroid and the baseline approaches.
Effectiveness results. Table 4 shows the overall effectiveness of the test cases generated by MACdroid,

TEMdroid, and AutoDroid on the FrUITeR dataset and Lin dataset, using both GPT-3.5 and GPT-4.0 as the LLMs.
For the results related to GPT-3.5, we further analyze the effectiveness of these approaches across different app
categories (see Table 5) and provide the significance and effect sizes of these approaches by category (see Table 6).
We count the executable-rate (denoted as “Exec.”), perfect-rate (denoted as “Perf.”), and success-rate (denoted as
“Suc.”) of MACdroid and baselines. We also separately count the impact of the test logics written by the three
volunteers (denoted as “Vol.”) on the effectiveness of AutoDroid.

Effectiveness on the FrUITeR dataset. All the test cases generated by MACdroid are fully executable (i.e., 100%).
When utilizing GPT-3.5 as the LLM, 64% of the test cases generated by MACdroid successfully test the target
functionalities (i.e., success-rate), and 18% of them align with the corresponding ground-truth (i.e., perfect-rate).
These results surpass TEMdroid and AutoDroid by over 191% in success-rate and 29% in perfect-rate. Note that,
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Table 4. Overall effectiveness of MACdroid and the baselines

Dataset Approach LLM Vol. Exec. Perf. Suc.

FrUITeR

MACdroid
GPT-3.5 - 100% 18% 64%

GPT-4.0 - 100% 16% 57%

AutoDroid

GPT-3.5
V-1 100% 1% 7%
V-2 100% 2% 9%
V-3 100% 1% 6%

GPT-4.0
V-1 100% 3% 11%
V-2 100% 5% 13%
V-3 100% 5% 12%

TEMdroid - - 64% 14% 22%

Lin

MACdroid
GPT-3.5 - 100% 57% 75%

GPT-4.0 - 100% 68% 77%

TEMdroid - - 77% 46% 53%

MACdroid*
GPT-3.5 - 100% 61% 86%

GPT-4.0 - 100% 68% 89%

AutoDroid

GPT-3.5
V-1 100% 2% 16%
V-2 100% 3% 13%
V-3 100% 2% 18%

GPT-4.0
V-1 100% 8% 18%
V-2 100% 14% 27%
V-3 100% 14% 39%

Table 5. Effectiveness of MACdroid and the baselines by category

Dataset Category
MACdroid TEMdroid AutoDroid

Exec. Perf. Suc. Exec. Perf. Suc. Exec. Perf. Suc.

FrUITeR
News 100% 21% 71% 42% 18% 19% 100% 1% 6%
Shopping 100% 15% 58% 79% 12% 23% 100% 2% 8%

Lin

Browser 100% 55% 100% 85% 85% 85% 100% 0% 22%
To-Do 100% 50% 70% 58% 28% 28% 100% 1% 9%
Shopping 100% 13% 25% 54% 4% 17% 100% 0% 0%
Mail 100% 88% 88% 100% 100% 100% 100% 0% 8%
Calculator 100% 90% 90% 100% 45% 65% 100% 9% 32%
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Table 6. Significant difference and Effect size of MACdroid and the baselines

Dataset Category
MACdroid vs TEMdroid MACdroid vs AutoDroid

Significance Effect size Significance Effect size

FrUITeR
News 1.97E-19 0.49 2.31E-51 0.49
Shopping 2.87E-10 0.34 7.24E-29 0.36

Lin

Browser 0.03 0.13 9.44E-14 0.58
To-Do 4.65E-03 0.36 1.59E-11 0.46
Shopping 0.49 0.07 1.36E-05 0.18
Mails 0.45 -0.12 5.89E-07 0.55
Calculator 0.04 0.18 2.49E-07 0.41

when GPT-4.0 is used, the test cases generated by MACdroid also show a slight improvement in the success-rate
(i.e., 57% in Table 4) compared to using GPT-3.5, which achieves a 54% success-rate in the same half of the total
apps.

Effectiveness on the Lin dataset. When using GPT-3.5 as the LLM, 75% of the test cases generated by MACdroid
successfully test the target functionalities, and 57% of them align with the ground-truth test cases. These results
outperform TEMdroid by 42% in success-rate and 24% in perfect-rate. We also separately calculate the accuracy
of generated assertions by MACdroid and TEMdroid at the case level. MACdroid achieves the assertion accuracy
of 83%, compared to 75% for TEMdroid.

The test cases in the Lin dataset include both events and assertions, but AutoDroid cannot generate assertions.
To fairly compare MACdroid with AutoDroid on the Lin dataset, we evaluate the test cases generated by
MACdroid and AutoDroid without considering the generated assertions. In this scenario, MACdroid (denoted as
“MACdroid*” ) outperforms AutoDroid by more than 378% in success-rate and 1933% in perfect-rate. Additionally,
switching from GPT-3.5 to GPT-4.0 also slightly improves the effectiveness of MACdroid.

Statistical analysis. Table 6 presents the significant differences and effect sizes between MACdroid and TEM-
droid, as well as between MACdroid and AutoDroid. In this table, red numbers indicate statistically significant
differences or large effect sizes, while black numbers indicate no significant difference or not large effect sizes. As
can be seen, MACdroid shows statistically significant differences compared to both TEMdroid and AutoDroid,
with large effect sizes.

Note that, all results from the FrUITeR dataset exhibit statistical significance and large effect sizes, whereas not
all results from the Lin dataset show similar trends. The reason for this phenomenon lies in the difference in the
number of test cases per category in the two datasets. Specifically, the FrUITeR dataset contains an average of 41
different test cases for each category, while the Lin dataset contains only an average of 8 test cases per category.
As statistical analysis requires a sufficient number of samples, the small number of test cases per category for the
Lin dataset are difficult to show significant differences.

Result analysis. We have several findings from Table 4.
First, compared to TEMdroid,MACdroid significantly improves the success-rate (e.g., 22% vs. 64% on the FrUITeR

dataset). Existing migration approaches only migrate a test case to the target app, but the same functionality can
be implemented differently across various apps. As a result, the migrated test case may only partially test the
functionality of the target app. In contrast, MACdroid extracts the general test logic from multiple test cases to
provide a comprehensive perspective of the target functionality, which is conducive to completely testing the
target functionality.
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Second, the test cases generated by TEMdroid may not be fully executable (see the column of “Exec.”). This is
because existing migration approaches migrate test cases based on widget mapping, but the migrated events and
assertions may miss some connection events in the target app, making the generated test case not fully executable.
In contrast, both MACdroid and AutoDroid generate test cases by incrementally selecting and executing events
within the target app, thereby ensuring that all connection events are retained and the generated test cases are
fully executable.

Third, compared to AutoDroid, MACdroid significantly improves the perfect-rate (e.g., 3% vs. 61% on the
Lin dataset). Existing generation approaches struggle to generate perfect test cases because the provided test
logics may be vague and ambiguous, making it challenging for the LLM to determine whether the functionalities
have been fully tested, thus including irrelevant events. In contrast, MACdroid splits a whole test logic into a
sequence of structured test steps, guides the LLM to generate test cases step-by-step, and verifies the completion
of each step. This approach effectively reduces the generation of irrelevant events and assertions, facilitating the
generation of perfect test cases.

Fourth, even when AutoDroid utilizes GPT-4.0, it still does not perform as well as MACdroid utilizing GPT-3.5.
This situation indicates that simply upgrading the LLM does not substantially enhance the generated test cases.
Instead, providing the LLM with high-quality test logics, restricting the input candidates for the LLM, and
repairing potential errors are important for improvement.

Fifth, the effectiveness of generated test cases for AutoDroid varies depending on the test logics written by
different volunteers. For example, the success-rates of AutoDroid on the FrUITeR dataset are 7%, 9%, and 6%,
respectively when utilizing the descriptions from the three volunteers. This variability underscores the impact
of human factors on the robustness of existing generation approaches. Instead, the general test logic extracted
by MACdroid not only automates the generation of test logics but also ensures stable quality for the LLM to
generate test cases.

Sixth, according to Table 5 we can observe that MACdroid achieves high effectiveness across different app
categories and outperforms the baselines, demonstrating the robustness of MACdroid.

Seventh, the accuracy of assertion generation is also evaluated at the test case level, as the test case serves
as the fundamental unit for functional testing. The accuracy is defined as the condition where all assertions
generated for a test case are completely consistent with the assertions in the ground-truth test cases. Assertions
play a crucial role in functional testing [33, 43]. Among the test cases generated by MACdroid, 83% of them
include assertions that successfully meet the requirements for testing the corresponding functionalities. This
result indicates that MACdroid is capable of generating high-quality assertions effectively and demonstrates
strong effectiveness in test case migration compared to related approaches.

Failure Analysis. To understand the weaknesses of MACdroid, we manually analyze all failure test cases and
identify three main reasons. We select three examples (see Figure 8) to introduce the failure reasons of MACdroid
and also to provide the potential solutions to address these failures.

First, a limited number of source test cases may not cover all the necessary test steps for the target functionality,
leading to the generated test case not fully testing this functionality. For example, the state (a) of Figure 8 shows a
registration functionality. MACdroid does not generate the necessary event (i.e., E1) because the source test cases
do not include steps related to confirmation. Increasing the diversity of source test cases, while leveraging the
general knowledge of LLMs to supplement necessary steps for general test logic, may potentially help address
this problem.

Second, the Event/Assertion Matching module may incorrectly match events and assertions to the correspond-
ing test steps, resulting in the generated test cases containing incorrect events and assertions. For example, states
(b) and (c) of Figure 8 illustrate a functionality designed to test the terms. The state (b) represents a part of the
source test case, while the state (c) shows the corresponding part of the target test case. Given the E2 event
from the source test case, the Event/Assertion Matching module incorrectly matches E4 event instead of the
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General test logic

Step 1: (Event) Click a widget 

”setting”
Step 2: (Event) Click a widget 

”text size”
Step 3: (Event) Click a widget 

”adjusting or scaling text size”
…

(a) (b) (c) (d) (e)

E1

E2

E3

E4

E5

E6

E7

Fig. 8. Failure case study

correct event, i.e., E3. This happens because the content descriptions of E4 (i.e., privacy policy) and E2 (i.e., terms)
are related, both falling under the broader agreement category, making the matching process prone to error.
Incorporating the state information into the matching process and utilizing more accurate matching algorithms
may help improve the effectiveness of the Event/Assertion matching module.

Third, the Event/Assertion Completion module may also select incorrect events and assertions or do not select
any events and assertions, impacting the generated test cases to successfully test the target functionality. We
illustrate this issue using states (d) and (e) in Figure 8, which depict the functionality of changing text size. In this
case, the Event/Assertion Completion module follows a general test logic (highlighted in green in the state (d)) to
generate events E5 and E6 for the first two steps of the general test logic. However, the module determines that
no events are suitable for Step 3, leading to the omission of an event selection for this step. As a result, the E7
event is missing from the final generated test case. Enhancing the Completion module with more self-learning
capabilities, and ensuring it fully understands the semantics behind each step of the general test logic, could help
mitigate this issue.

Answer to RQ1: MACdroid is effective and substantially outperforms the baselines in GUI test migration.

4.3 RQ2: Main Techniques
We evaluate the contributions of the main techniques used in MACdroid based on metric evaluation and

statistical analysis on the FrUITeR dataset. The LLM used is GPT-3.5.
Experimental setting. There are four experiments. First, we evaluate the effectiveness of Abstractor in

MACdroid. Specifically, we modify AutoDroid by replacing its manually crafted test logics with the extracted
general test logics by Abstractor, denoted as “AutoDroid (with Abstractor)”. We then compare the effectiveness of
the original AutoDroid with “AutoDroid (with Abstractor)”. Second, we investigate the effectiveness of Concretizer
in MACdroid. Specifically, we compare the test cases generated by “AutoDroid (with Abstractor)” with those
generated by the original MACdroid, as they both use the same test logics but different generation approaches.
Third, we investigate the effectiveness of the validation modules used in the Abstractor component and the
Concretizer component of MACdroid. Specifically, we compare the test cases generated by MACdroid without
these validation modules (denoted as “MACdroid (without Validation)”) with those generated by the original
MACdroid. Fourth, we investigate the robustness of MACdroid when using different sources of privileged
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Table 7. Effectiveness of main techniques in MACdroid

Approach Executable Perfect Success

MACdroid 100% 18% 64%
AutoDroid 100% 2% 9%

AutoDroid (with Abstractor) 100% 9% 27%
MACdroid (without Validation) 100% 4% 31%
MACdroid (with AppFlow) 100% 15% 59%

Table 8. Significant difference and Effect size of MACdroid and the main techniques

Approach Significance Effect size

AutoDroid (with Abstractor) vs AutoDroid 5.79E-12 0.12
MACdroid vs AutoDroid (with Abstractor) 4.67E-21 0.37
MACdroid vs MACdroid (without Validation) 1.21E-07 0.29
MACdroid vs MACdroid (with AppFlow) 0.38 0.04

events and assertions (i.e., different migration approaches). Specifically, we select AppFlow [40], a representative
migration approach that has been extensively compared in numerous studies [61, 84, 86]. Then, we compare the
test cases generated by the original MACdroid that uses privileged events and assertions from TEMdroid [84]
with the results generated by MACdroid (denoted as “MACdroid (with AppFlow)”) that uses privileged events
and assertions from AppFlow [40].
Effectiveness results. Table 7 presents the executable-rate, perfect-rate, and success-rate of this evaluation.

First, by comparing the second row with the third row, we observe that using the general test logics generated
by the Abstractor component significantly improves the effectiveness of AutoDroid (e.g., 27% vs. 9% in the
success-rate). This result indicates that the general test logics generated by the Abstractor component provide
better guidance for the LLM compared to manually crafted test logics, making the LLM easier to understand the
functionalities being tested. Second, by comparing the first row with the third row, we observe that even with
the general test logics, AutoDroid does not perform as well as MACdroid (e.g., 27% vs. 64% in the success-rate).
This result suggests that the priority strategy, along with the test validation mechanisms, are also crucial for
generating high-quality test cases. Third, a comparison between the first and fourth rows reveals that the LLM
tends to generate some inaccurate results, highlighting the importance of the validation modules used in the
Abstractor component and the Concretizer component (e.g., 64% vs. 31% in the success-rate). Fourth, a comparison
between the first and fifth rows indicates that MACdroid is reliable and robust when employing various sources
of privileged events and assertions (e.g., 64% vs. 59% in the success-rate).
Statistical analysis. Table 8 presents the significant differences and effect sizes for the following four com-

parisons, which are AutoDroid (with Abstractor) versus the original AutoDroid, the original MACdroid versus
AutoDroid (with Abstractor), the original MACdroid versus MACdroid (without Validation), and the original
MACdroid versus MACdroid (with AppFlow).

In Table 8, the red numbers indicate significant differences or large effect sizes, while the black numbers
represent no significant differences or not large effect sizes. The statistical results show that the Abstractor
component, Concretizer component, and the validation module are crucial in MACdroid. When these modules
are removed, significant differences are observed compared to the original version. All results in the fourth row
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Table 9. Efficiency of MACdroid and the baselines

Dataset
MACdroid TEMdroid AutoDroid

Runtime Token Runtime Token Runtime Token

FrUITeR 5.1 6378 9.6 18 5.5 6496
Lin 4.7 8256 8.8 14 4.5 9425

are black, indicating no significant differences when changing different privileged events and assertions. This
result also demonstrates that the MACdroid approach exhibits high reliability and robustness, not relying on
specific sources of privileged events and assertions.

Answer to RQ2: MACdroid’s main techniques substantially contribute to GUI test migration.

4.4 RQ3: Efficiency
To assess the efficiency of MACdroid, we evaluate the execution time and the token usage of MACdroid,

TEMdroid [84], and AutoDroid [78] on the FrUITeR dataset and the Lin dataset, respectively.
Efficiency results. Table 9 shows the average runtime and token-usage per test case for MACdroid, TEMdroid,

and AutoDroid. The average runtime for MACdroid per test case is 5.1 minutes on the FrUITeR dataset and 4.7
minutes on the Lin dataset. These results are faster than TEMdroid and comparable to those of AutoDroid. The
average token usage for MACdroid per test case is 6378 on the FrUITeR dataset and 8256 on the Lin dataset, which
is smaller than that of AutoDroid. Note that, TEMdroid fine-tunes its own model based on BERT [5] instead of
utilizing LLMs, resulting in the lowest token usage.

The time cost of MACdroid is primarily influenced by its two components, i.e., Abstractor and Concretizer.
For a target functionality, MACdroid spends less than 0.5 minutes on average when generating a general test
logic using the Abstractor component. The majority of the time is consumed by the Concretizer component in
generating test cases. This is because Abstractor interacts with the LLM fewer times than Concretizer does. Ideally,
the Abstractor component only needs to interact with the LLM twice (once to generate the test logic and the
other to validate it). However, the Concretizer component requires multiple interactions with the LLM to select
events for each test step, including matching, completion, and validation. Reducing the number of interactions
between the Concretizer component and the LLM would significantly improve MACdroid’s efficiency.

Answer to RQ3: MACdroid’s efficiency is comparable to the baselines.

4.5 RQ4: Usefulness
To further evaluate the usefulness of MACdroid, we conduct a study evaluating MACdroid in new apps. The

LLM used in this evaluation is GPT-3.5.
Experimental objects. We leverage a new dataset [17], referred to as the TEM dataset in this study, which

was developed as part of the research on TEMdroid [84]. The TEM dataset incorporates all the apps and test cases
from the Lin dataset [14] as source apps and source test cases. These source test cases include both events and
assertions, which enables the evaluation of MACdroid’s effectiveness in generating comprehensive test cases. The
TEM dataset includes five new target apps, which are popular apps in the Google Play Store [12], with each app
belonging to a distinct category in the Lin dataset. Note that, the TEM dataset does not provide the ground-truth
test cases for the target apps.
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Table 10. Results of the usefulness study in MACdroid

App Executable Success

Web Browser 100% 67%
Done 100% 83%
Fivemiles 100% 50%
Pro Mail 100% 83%
Tip Calculator 100% 83%

Average 100% 73%

Evaluation process. To assess the effectiveness of MACdroid, we adopt a similar evaluation process as
described in Section 4.1 and engage the same three volunteers. Since the TEM dataset does not include ground-
truth test cases, we are unable to provide the volunteers with the ground-truth target test cases or evaluate the
perfect-rate metric. To address this issue, we provide the volunteers with ground-truth source test cases for the
same functionality, helping them gain a clearer understanding of the target functionality. Thus, the evaluation
metrics for this study are executable-rate and success-rate.
Usefulness results. Table 10 presents the executable-rate and success-rate of the test cases migrated by

MACdroid on the TEM dataset. In this study, MACdroid achieves an executable-rate of 100% and a success-rate
of 73%. From Table 10 we observe that MACdroid demonstrates significant effectiveness across different app
categories, highlighting its satisfactory usefulness in new apps.

Answer to RQ4: MACdroid shows satisfactory usefulness in new apps.

4.6 Threats to Validity
A possible threat to external validity is the generalizability to other datasets. To mitigate this threat, we use

the largest number of apps and app categories compared with related work. Moreover, we use all the popular
datasets in test case migration, i.e., the Lin dataset [52] and the FrUITeR dataset [10], as evaluation benchmarks.
These datasets include a variety of complex industrial apps (e.g., ABC News [1] and Firefox Browser [9]), which
may help to evaluate MACdroid and the baselines in real-world scenarios.

A possible threat to internal validity is the possible mistakes involved in our implementation and experiments.
To mitigate this threat, we manually inspect our results and analyze the test cases that fail to test the target
functionalities. We also publish our implementation and experimental data, which welcome external validation.
As for the human evaluation, we invite three experienced developers and provide them with a clear evaluation
process.

A possible threat to construct validity is about evaluation metrics. To mitigate this threat, we carefully design
three metrics aiming at validating the effectiveness of the generated test cases. These metrics offer a reliable and
objective basis for assessing the quality of the test cases generated by both the baselines and MACdroid.

5 DISCUSSION
Collecting and retrieving source test cases. Migration approaches typically leverage source test cases as

input to migrate them into target apps. These approaches reduce the cost of manually writing GUI test cases
for the target apps and enable the reuse of existing GUI test cases. MACdroid is also a migration approach that
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significantly outperforms existing approaches (see Section 4.2). However, applying migration approaches to
industry still needs to consider the collection and retrieval of source test cases.

Collection. In real-world scenarios, there are many similar apps and corresponding GUI test cases [40, 62, 86].
For example, app stores (e.g., Google Play Store [12] and F-Droid [8]) organize similar apps into the same
categories (e.g., shopping and news). Additionally, open-source communities (e.g., GitHub [11]) host numerous
mobile apps with test cases. Leveraging these open-source test cases and existing datasets [10, 14], collecting
apps and GUI test cases becomes a straightforward process.

Retrieval. These apps and test cases can be organized by app category and the specific functionalities within
each category. Cluster-based algorithms (e.g., K-Means [46]) can be used to group test cases based on functionality
names and test case annotations. Each cluster contains test cases corresponding to specific functionalities within
the same category. Given a target app, its category, and the functionality name to be tested, the closest cluster in
the collected dataset can be identified, and all test cases associated with that cluster can be retrieved.
Impact and solution of the quality of source test cases. The quality of source test cases impacts the

effectiveness of MACdroid. Below we first detail analyze the impact of the high-quality source test cases and the
low-quality ones on the effectiveness of MACdroid. We further analyze the potential solution to the test case
selection.

Impact. High-quality source test cases, which are representative of testing a target functionality with minimal
app-specific information (e.g., environment-specific details), may enhance MACdroid’s effectiveness. Such test
cases effectively encapsulate the core logical information required to test a target functionality while minimizing
interference from irrelevant app-specific details. As a result, the general test logic derived from high-quality
source test cases accurately reflects the essence of the target functionality and can be seamlessly instantiated for
the target app.

In contrast, low-quality source test cases, which lack representativeness or include excessive app-specific
details, may lead to incomplete or noisy test logic generation. This deficiency may lead to inconsistencies between
the generated test logic and the actual requirements for testing the target app. Consequently, the test cases derived
from such logic may fail to fully test the target functionality, either by only partially testing it or containing
numerous errors, and thus still require manual modification.

Solution. There are two ways to potentially improve the quality of source test cases. First, the selection of
source test cases could be diversified. By selecting test cases from different scenarios and across various mobile
apps that test the same functionality, we may obtain a broader and more accurate representation of how the
functionality should be tested. Second, filtering out low-quality test cases is also essential. By filtering out test
cases that have incomplete test logics or rely heavily on app-specific information, we can reduce interference
from irrelevant details, thereby facilitating the accurate generation of the general test logic and the concrete test
case.

Branch coverage of MACdroid and the baselines. Branch coverage [36, 38, 67] is a commonly-used code
coverage metric. Compared to method coverage or block coverage, branch coverage imposes a higher standard
and requires higher qualities for test cases.

In Section 4, we evaluate the effectiveness of MACdroid, TEMdroid, and AutoDroid from three perspectives.
These perspectives test whether the test cases are fully executable test cases (i.e., executable-rate); whether the
test cases successfully test the target functionality (i.e., success-rate); and whether the test cases align with the
ground-truth test cases (i.e., perfect-rate). To provide a comprehensive understanding of these approaches, we
also discuss the branch coverage of the test cases generated by MACdroid, TEMdroid, and AutoDroid compared
with that of the ground-truth test cases. Specifically, we design a new metric, coverage-capability. For a given
app, this metric is calculated as the ratio of common covered branches (�>E4A2><<>=) between the generated test
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Table 11. Branch Coverage of MACdroid and the baselines

Dataset Category App
Coverage number Coverage capability

GT. MAC. TEM. Auto. MAC. TEM. Auto.

FrUITeR

News

ABC News 21775 24498 14072 16725 83% 60% 53%
BuzzFeed 22146 19299 29640 19202 79% 84% 78%
Fox News 27120 26496 13309 20521 94% 47% 51%
Reuters News 10272 10508 10219 16492 99% 82% 82%

Shopping
Etsy 12561 11896 7249 8621 94% 54% 64%
Geek 13860 12273 21481 10654 86% 77% 76%
Wish 9055 8969 8903 8903 94% 93% 93%

Average 16684 16277 14982 14445 89% 67% 67%

Lin

Browser

Lightning 14294 13962 5344 5061 97% 37% 35%
Privacy Browser 3400 3447 3378 2749 96% 99% 81%
FOSS Browser 1432 1432 1432 827 100% 100% 58%
Firefox 13217 13157 13324 2186 99% 98% 16%

To-Do

Minimal 2554 11539 2501 1543 98% 98% 49%
Clear List 1723 1724 1732 1703 100% 100% 99%
To-Do 3211 11856 2631 3376 91% 82% 91%
Simply Do 50 50 36 42 100% 72% 80%
Shopping List 3144 10944 2136 2688 88% 62% 58%

Shopping

Geek 9897 7236 6979 6917 71% 68% 66%
Yelp 18291 17265 10634 10591 92% 57% 57%
Etsy 10663 11238 9009 9366 98% 82% 84%
Wish 9053 17854 5049 5130 98% 56% 56%

Mail
K-9 Mail 3355 3216 3355 1433 95% 100% 43%
Fast Email 2584 2586 2584 1592 99% 100% 60%

Calculator

Tip Calculator 212 212 190 190 100% 89% 89%
Simple Tip 1773 1626 1625 1810 92% 92% 100%
Tip Plus 2619 2598 2438 2601 99% 93% 99%
Free Tip 1521 1450 1412 1507 95% 93% 99%

Average 5421 7021 3989 3227 94% 72% 57%

cases and the ground-truth test cases, to the total covered branches (�>E4A6C ) by the ground-truth test cases. We
use the WALLMANUER [21] tool to calculate the branch coverage for each app.

Note that, coverage-capability and the metrics in Section 4 are evaluated from different perspective. In this
way, the result trends of MACdroid, TEMdroid, and AutoDroid presented here and in Section 4 may be related
but different.
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Coverage-capability = Covercommon /Covergt (4)

Table 11 shows the branch coverage results for MACdroid (denoted as MAC.), TEMdroid (denoted as TEM.),
and AutoDroid (denoted as Auto.) across all successfully instrumented apps from the Lin and FrUITeR datasets.
For each approach, we report the number of covered branches and the coverage-capability. We also report the
number of branches covered by the ground-truth (denoted as GT.) test cases for reference.

Specifically, on the FrUITeR dataset, 89% of the branches covered by the ground-truth test cases can be covered
by MACdroid, while TEMdroid and AutoDroid can only cover 67% and 67%, respectively. The results on the Lin
dataset are similar, with MACdroid covering 94% of the branches covered by the ground-truth test cases, while
TEMdroid and AutoDroid only cover 72% and 57%, respectively. These results indicate that MACdroid achieves
the closest match to the ground-truth in terms of branch coverage, outperforming TEMdroid and AutoDroid.
Note that, the FrUITeR and Lin datasets used in this study are among the most widely-used datasets in test case
migration. Both datasets include industry-level apps (e.g., ABC News [1] and Firefox [9]), making them effectively
evaluate test case migration approaches in real-world environments.

6 RELATED WORK
GUI test migration. Several approaches [25, 40, 52, 55, 62, 84] have been proposed for migrating GUI

test cases between different apps. AppFlow [40] utilizes a trained multi-classifier to identify widget labels,
considering widgets with the same widget labels as mapped widgets. ATM [25], Craftdroid [52], TRASM [55],
and Adaptdroid [62] leverage different word embeddings [47, 65] to represent words in widgets and employ a
manually defined matching function to map widgets. TEMdroid [84] is the first approach that trains a matching
model for widget mapping. After mapping widgets, these migration approaches generate the corresponding
events and assertions for the target apps. MigratePro [85] is a related approach for GUI test migration that seeks
to improve migration techniques through test case synthesis.

The key difference between existing migration approaches and MACdroid lies in the distinct paradigms they
follow for GUI test migration. Existing migration approaches follow the widget-mapping paradigm, which maps
widgets from source test cases to target test cases. In contrast, MACdroid is based on the abstraction-concretization
paradigm, which first abstracts the general test logics for the target functionalities and then uses these logics to
guide the LLM to concretize the target test cases. Compared with existing migration approaches, the test cases
generated by MACdroid show significant improvements (see Section 4.2).
Functional GUI test generation. Several approaches [34, 42, 44, 49, 74, 78, 79] aim to generate GUI test

cases for apps in different systems. Among them, four approaches [44, 49, 78, 79] target the Android system.
Li et al. [49] input manually crafted test logics and manually selected candidate app screenshots for the target
functionality and utilized a matching model to select events appearing in the screenshots. However, this approach
only supports one action (i.e., click), limiting its applicability in real-world scenarios. FARLEAD-Android [44]
requires users to provide formal specifications as inputs, which poses a significant challenge for user adoption.
DroidBot-GPT [79] utilizes LLMs to select events based on manually crafted test logics. AutoDroid [78], an
advanced version of DroidBot-GPT, includes an offline stage to understand the state relationships. For the iOS
system, AXNav [74] and ILvuUI [42] input test logic and app screenshots. They further employ vision-based LLMs
to select events. AssistGUI [34] is a GUI test generation approach specifically designed for the Windows system.
Note that, the source code and tools for FARLEAD-Android, AXNav, ILvuUI, and AssistGUI are not available.

The key difference between existing GUI test generation approaches and MACdroid lies in how the test logics
for the target functionalities are obtained. These approaches rely on manually crafted test logics, making the
process time-consuming and impractical for large-scale apps. In contrast, MACdroid extracts test logics from
source test cases, effectively replacing the need for manually crafted test logics.

ACM Trans. Softw. Eng. Methodol.

 



26 • Zhang et al.

Bug detection for mobile apps. According to exploration strategies, bug detection related approaches for
mobile apps can be classified into four categories, i.e., random testing approaches [18, 59, 72, 73], model-based
approaches [22, 37, 48, 50, 57, 70, 71, 76, 81], systematic testing approaches [20, 35, 60], and learning-based
approaches [26, 27, 45, 51, 58, 68, 69, 82]. Specifically, Monkey [18], a widely-used approach, employs random
exploration to uncover bugs. AIMDROID [37] and Stoat [70] leverage static analysis and dynamic exploration
to construct a model of the app under test, and subsequently detect bugs based on this model. SCENTEST [81]
adopts a different modeling approach by collecting extensive test reports and generating event knowledge graphs
to guide its exploration. These event knowledge graphs integrate user testing information, representing a valuable
effort to leverage user-provided insights for enhancing automated exploration and identifying complex bugs.
SynthesiSE [35] is a concolic execution approach for Android applications. Unlike traditional methods, which rely
on manually written models for the Android framework, SynthesiSE dynamically infers expressions representing
Android models during execution. RoScript [68] and ROBOTEST [82] focus on embedded systems. They use
robotic arms with computer vision-based algorithms to detect bugs across embedded systems. V2S [26] aids bug
detection by automatically translating video recordings of Android app usages into replayable test cases.

The key distinction between MACdroid and existing bug detection approaches lies in their different purposes.
Existing approaches primarily focus on GUI exploration and bug detection but lack the capability to effectively
emulate user behavior for testing individual functionalities. Therefore, to validate user behavior during the
execution of specific functionalities, industry practitioners often rely on extensive manual effort to design and
execute tests for individual functionalities, ensuring the correctness of individual functionalities. In contrast,
MACdroid generates test cases based on specific test logics for individual functionalities, enabling it to emulate
real-world user interactions with each functionality more accurately.

7 CONCLUSION
GUI test migration aims to produce test cases for specific functionalities of a target app. Existing migration

approaches follow the widget-mapping paradigm. However, test cases produced using this paradigm are often
incomplete or contain bugs, making them difficult to use directly for testing target functionalities and require
additional manual modifications. In this paper, we have proposed a new paradigm for GUI test migration
(i.e., abstraction-concretization paradigm). We then proposed MACdroid, the first approach that follows this
paradigm to migrate GUI test cases. We have evaluated the effectiveness of MACdroid on 31 real-world apps,
34 functionalities, and 123 test cases, and compared it with two state-of-the-art approaches, TEMdroid and
AutoDroid. Our experimental results demonstrate the effectiveness of MACdroid in GUI test migration.
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