
HapTest: The Dynamic Analysis Framework for OpenHarmony
Farong Liu∗

Beihang University
China

Mingyi Zhou∗
Beihang University

China

Yakun Zhang
Peking University

China

Ting Su
East China Normal University

China

Bo Sun
Huawei
China

Jacques Klein
University of Luxembourg

Luxembourg

Xiang Gao
Beihang University

China

Li Li†
Beihang University

China

Abstract
ArkTS is a new programming language dedicated to developing ap-
plications (apps) for the emerging OpenHarmony mobile operating
system. Like other programs, apps developed with ArkTS suffer
from bugs, leading to, e.g., crashes, or performance and security
issues. Our community usually uses dynamic analysis to analyze
the app’s behavior and detect bugs. Unfortunately, a framework
tailored for OpenHarmony apps dynamic analysis is not yet avail-
able for the developer community. To bridge this gap, we propose a
new dynamic analysis framework named HapTest, which has been
specifically designed to cope with OpenHarmony apps’ original
features. We make HapTest publicly available as an open-source
project. Our HapTest has several fundamental dynamic analysis fea-
tures (e.g., PTG, DataHub, etc.) that are ready to be reused by devel-
opers, and further customized to enable specific dynamic analysis,
for instance, to detect malware or performance issues. Experiment
results show that our HapTest achieves both high analysis cover-
age and high effectiveness. In addition, our HapTest is evaluated
on the top 20 popular commercial apps from the OpenHarmony
app market, each with at least millions of downloads. Our testing
method revealed 26 previously unreported crashes in 11 out of the
20 applications, which demonstrates the practicality of HapTest.

CCS Concepts
• Theory of computation→ Program analysis; • Software and
its engineering→ Software testing and debugging.

Keywords
OpenHarmony, Dynamic Analysis, Mobile Application Testing,
ArkTS, Automated Testing, GUI Testing

∗Equal Contribution
†Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE Companion ’25, June 23–28, 2025, Trondheim, Norway
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3728565

ACM Reference Format:
Farong Liu, Mingyi Zhou, Yakun Zhang, Ting Su, Bo Sun, Jacques Klein,
Xiang Gao, and Li Li. 2025. HapTest: The Dynamic Analysis Framework for
OpenHarmony. In 33rd ACM International Conference on the Foundations of
Software Engineering (FSE Companion ’25), June 23–28, 2025, Trondheim, Nor-
way. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3696630.
3728565

1 Introduction
Mobile applications (apps) are ubiquitous with increasingly com-
plex program structures and interaction logic, making automated
testing crucial for ensuring app quality and reliability [41]. Open-
Harmony [11, 26], as a newly launched distributed system for all
scenarios, has rapidly gained widespread adoption across smart-
phones, smart home devices, smart TVs, vehicle systems, and other
IoT devices, thanks to its powerful cross-platform capabilities and
distributed architecture. As of 2024, the OpenHarmony ecosystem
has accumulated over 15,000 apps and 900 million devices.

Like most software, mobile apps are often buggy, leading to
runtime crashes. Dynamic analysis [39, 47] is an important tech-
nique that can analyze app behavior during runtime, which ob-
serves the actual execution of programs to gather information
rather than examining source code or executable files. Therefore,
researchers leverage various testing techniques based on dynamic
analysis tools such as fuzzing tests [15, 17, 29], model-based test-
ing [1, 2, 5, 6, 22, 23, 40, 48], and search-based testing [3, 20, 30, 31]
to dynamically explore apps to discover defective behaviors [49],
GUI bugs [32], intent defects [38], crash faults [1, 33, 34, 50], etc. In
addition, mobile apps are particularly sensitive to performance [25]
and security issues [21, 36, 43], which can also be discovered using
methods based on dynamic analysis.

However, existing dynamic program analysis frameworks for
mobile apps, which primarily target Android systems, cannot be
applied to OpenHarmony apps due to significant architectural dif-
ferences between OpenHarmony and Android. These differences
manifest in several key aspects. First, in terms of event design, Open-
Harmony implements a sophisticated event-driven mechanism that
encompasses both system events and interaction events, with dis-
tinct definitions and parameters from Android. For example, regard-
ing UI construction, OpenHarmony utilizes the ArkUI framework
that supports declarative development based on ArkTS, featuring
its unique layout and component system architecture. Second, in

https://doi.org/10.1145/3696630.3728565
https://doi.org/10.1145/3696630.3728565
https://doi.org/10.1145/3696630.3728565
AliceWork

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Farong Liu, Mingyi Zhou, Yakun Zhang, Ting Su, Bo Sun, Jacques Klein, Xiang Gao, and Li Li

app architecture, OpenHarmony employs the Stage Model [35] that
centers on UIAbility and implements page navigation through
built-in router APIs, which differs substantially from Android’s
Activity and Fragment paradigm. These fundamental differences
necessitate the development of new dynamic program analysis
frameworks that are tailored to unique features of OpenHarmony
apps, encompassing support for simulation of platform-specific
event types, UI component recognition and manipulation, code
coverage measurement, and verification of task management and
navigation mechanisms.

To address the aforementioned challenge, we propose HapTest,
which is the first dynamic analysis framework for OpenHarmony
apps. This framework has a complete dynamic analysis workflow
through four core modules: (1) Code InstrumentationModule (CIM),
(2) Executor, (3) Event Generation Module (EGM), and (4) Data Pro-
cessing Module (DPM). Specifically, given an OpenHarmony app,
the framework first utilizes CIM to inject monitoring code at critical
points in the source code to collect runtime behavioral data. Sub-
sequently, EGM generates test events based on different strategies
using the global data. The Executor then transforms these events
into device-specific actions for execution and collects runtime states
upon action completion. Meanwhile, the DPM is responsible for
modeling and analyzing runtime data, including UI-type data Page
Transition Graph (PTG) and text-type data DataHub (fault logs, app
logs, coverage data, performance data, etc.). This new data is fed
back to EGM to generate more accurate events, thereby achieving
better coverage. This forms a cycle: event generation - event execu-
tion - data collection - data analysis. Upon completion, the Reporter
generates comprehensive reports including crash reports, coverage
reports, and performance reports, enabling a thorough analysis of
program behavior. Our dynamic analysis method is evaluated on
the top 20 popular commercial apps from the OpenHarmony App
Gallery1, each having millions of downloads. The experimental
results revealed 26 previously unreported crashes in 11 out of the
20 OpenHarmony apps under test, which shows the effectiveness
of our HapTest.

The main contributions of this paper include:

• We present HapTest, the first dynamic program analysis frame-
work specifically designed for OpenHarmony apps implemented
with the new ArkTS programming language.

• Our framework introduces a novel layered and decoupled testing
architecture that implements an open policy module with com-
prehensive real-time data support, including PTG, code coverage,
crashes, and logs, allowing users to easily implement custom
testing strategies.

• We evaluated HapTest on the top 20 popular commercial Open-
Harmony apps. We detected 26 unknown crashes detected in 11
top commercial apps.

• We open-source our dynamic analysis framework at: https://
github.com/SMAT-Lab/HapTest. The code instrumentation tool
BJC2 of our framework has been deployed on the official DevEco
Studio IDE for producing coverage information.

1https://developer.huawei.com/consumer/cn/app/
2https://www.npmjs.com/package/bjc

2 Background
2.1 OpenHarmony App

Figure 1: Stage Model of OpenHarmony APP

OpenHarmony is an open-source operating system developed
and managed by the OpenAtom Foundation. It aims to provide a
distributed operating system framework for smart devices across
all scenarios in a fully connected world. Since its release, OpenHar-
mony has stood out as the most active open-source project hosted
on Gitee, which is an open-source software hosting platform. Open-
Harmony apps are typically developed using the Stage Model. As
shown in Figure 1, an OpenHarmony app is made up of one or
multiple HAPs (Harmony Ability Packages), which are the basic
units for app installation and execution. Each HAP contains one
UIAbility component, a built-in class designed to provide UI for
user interactions. The concept behind UIAbility is comparable to
Activity in Android except that the former could contain various
UI pages while the latter generally contains only one UI page.

2.2 ArkTS
ArkTS is a new programming language for developing OpenHar-
mony apps. In order to benefit from the existing ecosystem of Type-
Script (TS), which has a large number of libraries, ArkTS attempts to
retain as many features as possible when extending the TS language.
Nevertheless, compared to TS’s original design, ArkTS makes some
changes in order to support a high-performance experience that is
essential for Apps running on mobile devices. Specifically, there are
two main unique features: (1) introducing the ArkUI framework
to support the implementation of UI pages (cf. Section 2.3), and (2)
limiting the flexibility of TS by constraining its dynamic features
that could impact execution performance. As the constraints of dy-
namic features only simplify the analysis, to show the gap between
the TS analysis and ArkTS analysis, we only introduce the unique
features of ArkUI in the next subsection.

2.3 ArkUI
In OpenHarmony, ArkUI is introduced to support the implementa-
tion of UI pages. As a declarative UI framework, compared to the
traditional procedural and imperative UI approaches, ArkUI focuses
on the outcome of the UI description. It binds the UI to reactive
data, which is more efficient as developers only need to focus on
data management. Additionally, the declarative UI offers a declar-
ative description which is similar to natural languages, making it
more intuitive.

The new syntactic structures introduced by ArkUI are one of
the primary reasons why traditional JavaScript/TypeScript analysis

https://github.com/SMAT-Lab/HapTest
https://github.com/SMAT-Lab/HapTest
https://developer.huawei.com/consumer/cn/app/
https://www.npmjs.com/package/bjc

HapTest: The Dynamic Analysis Framework for OpenHarmony FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

@Entry
@Component
struct Index {
 @State message: string = 'Hello World';

 build() {
 Row() {
 Column() {
 Text(this.message)
 .fontSize(50)
 Button('myButton')
 .onClick(() => {
 this.message = 'ArkUI';
 })
 .height(50)
 .width(100)
 .margin({ top:20 })
 }
 }
 }
}

Decorator

Custom Component

UI Description

System Component

Property Method

Event Method

Figure 2: ArkUI Code Example.

tools cannot effectively analyze ArkTS applications. We illustrate
the components of ArkUI through a simple ArkUI code example, as
shown in Figure 2. This code example defines a simple page with
a button. The screen will show a message “ArkUI” after pressing
the button. Decorator features play a crucial role, with elements
like @Component marking custom components, @Entry specifying
entry components, and @State indicating dynamic state variables
that prompt UI updates upon modification. The UI Description is
systematically defined within the build() method, detailing the
UI’s structural elements in a clear, declarative manner. Custom
Component refers to reusable UI blocks, such as the Index struc-
ture, which can incorporate other elements and is designated by
the @Component decorator. System Component includes funda-
mental and container components built into the framework, like
Column, Text, Divider, and Button, offering readily accessible
tools for developers. Property Method and Event Method al-
low for detailed customization and interaction handling within
components; for instance, property methods such as fontSize(),
width(), height(), and backgroundColor() adjust visual aspects,
while event methods such as onClick() facilitate user engagement
strategies. This architecture not only simplifies the development
process but also enhances the functionality and interactivity of
the application interfaces. As the fundamental difference between
programming language and mobile platforms, there is a strong
need to invent a new dynamic analysis framework for analyzing
the behaviors, performance, and security of OpenHarmony apps.

3 Approach
HapTest is a dynamic program analysis framework designed for
OpenHarmony apps, aiming to provide fundamental support for
various app analysis tasks such as malware detection, crash localiza-
tion, performance analysis, etc. As highlighted in Figure 3, HapTest
takes as input an app repository and outputs the analysis results
based on the adopted exploration strategies. HapTest leverages four
modules to achieve the aforementioned purpose, namely (1) the
Code Instrumentation Module (CIM), which first performs code

Figure 3: Overview of the HapTest framework, which illustrates the
complete workflow.

instrumentation on the target application by inserting monitoring
code at critical points to collect runtime data. This module will
further compile and build the source code into an executable Open-
Harmony app. (2) the Executor Module (EM), which is responsible
for installing the app and subsequently executing the dynamic
analysis process by simulating user interactions and collecting exe-
cution feedback based on the app’s running state (i.e., raw data), (3)
the Data Processing Module (DPM), which transforms the raw data
(collected by the EM) into structured datasets aiming to facilitate
the implementation of actual dynamic analysis strategies, and (4)
the Event Generation Module (EGM), the core component of this
dynamic analysis framework, which is responsible for generating
the next event based on the current execution state so as to guide
the dynamic analysis. This module offers a policy adapter that al-
lows users to customize the event generation policy based on their
actual demands. We now detail these four modules, respectively.

3.1 Code Instrumentation Module (CIM)
CIM is responsible for code instrumentation [37, 42], which is cru-
cial for coverage analysis and performance analysis. CIM uses the
Identification and Insertion mechanism. Below we introduce the
details of the Identification and Insertion mechanism.

3.1.1 The mechanism of CIM. CIM uses the Identification and In-
sertion mechanism. CIM identifies and locates instrumentation
points using AST (Abstract Syntax Tree), whose structure allows
for the precise identification and location of nodes corresponding
to specific statements. Therefore, we can locate the instrumentation
points in the code based on names or types. Then, it traverses the
AST and inserts nodes containing code snippets in these points.
Finally, CIM replaces the original AST with the modified AST.

3.1.2 The applications of CIM. The applications of CIM are the
coverage instrumentation and the other instrumentation.

Coverage Instrumentation. Coverage data typically includes
three aspects: lines, branches, and functions. Therefore, we need to
identify the node types corresponding to these three cases. Table 1
lists the positions where we insert counting code. Specifically, we

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Farong Liu, Mingyi Zhou, Yakun Zhang, Ting Su, Bo Sun, Jacques Klein, Xiang Gao, and Li Li

insert counting code at all basic block, branch, and function class
nodes to obtain execution counts during runtime.

Table 1: The Types and Positions of Coverage Instrumentation

Type Position Insert Code

Function FunctionDeclaration
FunctionExpression
ArrowFunction
MethodDeclaration

instFunction

Branch IfStatement
SwitchStatement
WhileStatement
ForStatement
ForInStatement
ForOfStatement
DoStatement
TryStatement

instBranch

Statement Basic Block instRegion

Other Instrumentation. Since we have established an efficient
identification and insertion mechanism, it becomes straightforward
to insert code with other functionalities at specified identifiers, such
as debug logging, performance monitoring, and other instrumenta-
tion needs.

Notably, we have separately extracted and encapsulated CIM’s
core capability of code instrumentation into a plugin called BJC
and open-sourced. Furthermore, it has been integrated into Open-
Harmony’s official IDE DevEco Studio [24], for which it has already
been extensively used by app developers.

3.2 Executor Module (EM)
As a dynamic analysis framework, the Executor Module requires
two essential capabilities: controlling the app and observing app
states. The Executor Module is specifically designed to interact with
OpenHarmony devices based on three modules. The Action Gen-
erator begins with simulating various events that OpenHarmony
possesses. These simulated events are then translated and executed
on the target app. After execution, Data Collector takes place
to gather the latest data from device. Finally, Result Generator
analyzes the collected data and produces comprehensive analysis
reports. We detail this module as follows:

3.2.1 Action Generator. Action generator has two parts: the first
part is event simulator, which simulates various events that Open-
Harmony possesses. The simulated events are then forwarded to
the second part, Event Executor, which translates and executes
them on the target app.

Event Simulator. To recreate user scenarios, the Event Simula-
tor supports a comprehensive set of events available in OpenHar-
mony, including UI events, key events and system events:
• UIEvent. UIEvents Represents user interactions with GUI compo-
nents, including clicks, long presses, scrolls and text inputs. These
events can be parameterized by either screen coordinates (x, y)
or direct component references to ensure precise interaction with
UI elements.

• KeyEvent. KeyEvent simulates hardware key operations such as
volume buttons and power key, parameterized by specific key
codes to replicate physical key interactions.

• SystemEvent. SystemEvent handles systemlevel operations in-
cluding application lifecycle management (e.g., launching, termi-
nating and switching HAPs), system settings changes, and device
state modifications.
Event Executor. There is a difference between simulated events

and executable action on devices, so we need to convert events into
platform-specific commands for execution. This usually requires
the help of tools, such as UIAutomator [14] or the debugging tool
adb [13] in Android. In OpenHarmony, there is a similar tool called
uitest that provides direct app manipulation capabilities.

Therefore, we deploy uitest as a Remote Procedure Call (RPC) [12]
server on the device. All UIEvents and KeyEvents are converted
into RPC requests for execution, while SystemEvents are handled
through Harmony Device Connector (hdc) [16]. Specifically, UI
interactions, page information retrieval, and screenshot capture
are processed via RPC calls, where each action is encapsulated
as RPC parameters following the protocol specifications defined
by the device-side server. This hybrid approach combining RPC
and hdc proves more efficient and reliable compared to traditional
command-line tools (e.g., adb, hdc).

3.2.2 Data Collector. The Data collector is performed after each
event completion. Before discussing data collection, let’s examine
how the data is generated. These data come from threemain sources:
system (crash logs), HapTest (coverage data and UI data), and app
(logs).

The OpenHarmony system can automatically collect crashes
for applications. When unhandled exceptions cause unexpected
application exits, the system collects these exceptions through spe-
cific mechanisms, such as capturing unhandled exceptions thrown
by applications or monitoring certain POSIX signals that indicate
failures. Meanwhile, coverage data is generated through the trigger
of counter code previously inserted by HapTest’s CIM. HapTest also
obtains UI screenshots and raw page data through RPC. In sum-
mary, all these data are generated automatically, whether they are
produced by the system, the framework, or the app itself, and they
are all written to their respective designated locations. Therefore,
we can collect data from specific locations.

Although for data collection, OpenHarmony provides command-
line tools for pulling data from the application’s data areas to local
storage. However, for security, OpenHarmony applications run in
sandboxes, which means only data with granted permissions can
be stored in the application’s data area. As a result, the data our
framework generates cannot be written to data areas, only stored
temporarily in the sandbox and cleared after program exits.

Therefore, a data channel is needed for timely data collection. A
feasible solution is to start a FTP service within the sandbox as a
channel when the application launches, enabling continuous data
pulling through FTP access during runtime.

3.2.3 Result Generator. The Result Generator (part of EM) gener-
ates comprehensive test reports, which cover three main aspects:
• Coverage Report. The Result Generator visualizes the coverage
data generated by CIM through heat maps and charts, presenting

HapTest: The Dynamic Analysis Framework for OpenHarmony FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

coverage metrics at different granularities (function, class, and
file levels). These metrics are helpful for identifying gaps between
different exploration strategies.

• PTG Report. HapTest documents the complete page transition,
including executed events, their parameters, timestamps, and
execution results, along with detailed page information. There-
fore, the event sequence is analyzed to traverse the PTG based on
timestamps. In addition, the page coverage can also be analyzed.

• Crash Report. The Result Generator details any crash detected
during runtime, including application force quits and system
crashes. The Result Generator organizes the stack traces and
environmental context for each crash to assist with debugging.

3.3 Data Processing Module
The collected data (including text-based data and UI-related data)
require further processing to support optimization strategies or
generate reports. The Data Processing Module (DPM) is specifically
designed to process these data collected from OpenHarmony de-
vices based on two modules. For text-based data, since they are in
a human-readable format, the DataHub Constructor only needs
to filter out the text entries related to the app under test and per-
form simple statistical analyses, thereby obtaining various types
of text data, such as fault logs, application logs, coverage data, per-
formance data, etc. However, UI-related data processing is more
complex, requiring the parsing of pages and their component trees,
as well as updating the PTG. In this section, we introduce the PTG
Generator in detail. Specifically, the PTG Generator first builds a
GUI model (see Section 3.3.1) corresponding to the Stage Model of
the OpenHarmony app. Then, it constructs Pages according to the
GUI model (see Section 3.3.2). Finally, it adds the pages to the PTG
(see Section 3.3.3).

3.3.1 GUI Model. To interact with the GUI, HapTest needs to accu-
rately identify it. To address this, we design a GUI model to handle
the parsing and storage of GUI raw data, which is a non-formatted
textual description of the UI page.

In OpenHarmony, the development of application generally
adopts the Stage Model, as shown in Figure 1. A UIAbility in-
stance can contain a group of related pages. Thus, we design a GUI
model, which adopts a corresponding hierarchical structure consist-
ing of the Ability, Page, and Component classes. Specifically, an
Ability contains multiple Pages, while each Page hosts numerous
Component. Component, as the smallest UI unit, represents a wid-
get on the page. The component contains positional information
and textual content, as well as rich attributes such as clickable,
scrollable, and so on.

3.3.2 Page Construction. Unlike Android, where an Activity con-
tains only one page, OpenHarmony’s app model allows multiple
pages within a single UIAbility. Consequently, the ViewTree rep-
resents raw data, dumped from the foreground page, which may
contain multiple pages.

Since the exploration process of dynamic analysis focuses on fore-
ground pages, we need to identify the active page among multiple
candidates. We employ a straightforward strategy. In this strategy,
pages are sorted by the condition𝑎.ℎ𝑒𝑖𝑔ℎ𝑡 > 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 &&𝑎.𝑤𝑖𝑑𝑡ℎ >

𝑏.𝑤𝑖𝑑𝑡ℎ, and the first page is selected.We employ this strategy based

on the observation that the foreground page typically occupies the
largest screen area.

Once the foreground page is identified, according to the GUI
Modeling mentioned earlier, the raw data is matched and parsed
to obtain a GUI instance for the page. This instance represents a
complete page structure and retains the hierarchical relationships
among its components, ensuring that each component’s position,
attributes, and interactions are preserved.

3.3.3 PTG Update. When new pages and events are identified or
created, they need to be updated to the PTG. The PTG is a data
structure used to describe the dynamic transition relationships
between pages, which helps the framework manage the flow and
interaction between different pages. Specifically, with pages as
nodes and events as edges, the PTG Generator adds the triplet
< lastPage, event, currentPage > to the PTG. On top of the PTG,
the PTGGeneratormaintains additional information that is valuable
for EGM. For example, by implementing shortest path algorithms,
we can quickly determine the minimum number of events required
between pages and assess page reachability. The PTG Generator
also tracks executed events for each page, which enables rapid
filtering of previously executed events to avoid duplicate execution
in EMG.

3.4 Event Generation Module
HapTest offers a policy adapter that allows users to customize
the event generation policy based on their actual demands. In the
following, we first introduce the policy adapter and then use one
example to introduce how to use the policy adapter.

3.4.1 Policy Adapter. To enable users to quickly implement custom
policies, we design a policy adapter with a pipeline architecture that
provides several adaptation points. The pipeline consists of four
main phases: Candidate Generation, Filtering, Scoring, and Selec-
tion. The Candidate Generation phase identifies potential actions
based on the current application state and historical execution data.
The Filtering phase applies constraints to remove invalid or unde-
sirable actions. The Scoring phase evaluates remaining candidates
using customizable metrics, while the Selection phase determines
the most appropriate action to execute according to specific strategy
criteria.

To facilitate the implementation of various policies, whether
they are heuristic-based policy, coverage-driven policy, or learning-
dependent policy, HapTest provides comprehensive structured data
support, including well-processed PTG and DataHub. This rich data
foundation makes policy development straightforward as develop-
ers can directly utilize these well-structured data.

Formally, a policy can be modeled as a function 𝜋 (𝑆) → 𝑒 ,
mapping the state space S to a single event e, where S represents
the complete state information available for decision making, and
e represents one of the generated events. 𝜋 denotes the decision
strategy.

In our Policy Adapter, we expand the state space S to provide
rich contextual information for decision making. The state space
includes PTG for representing the application’s structural model,
Coverage for tracking test coverage metrics, CCM (Component
CodeMapping) for linking UI components to source code, crash logs

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Farong Liu, Mingyi Zhou, Yakun Zhang, Ting Su, Bo Sun, Jacques Klein, Xiang Gao, and Li Li

for recording application failures, and general logs for capturing
runtime behavior.

The decision strategy 𝜋 is implemented as a modular pipeline
consisting of four sequential operations:

𝜋 = candidate ◦ filter ◦ score ◦ select
where ◦ represents the pipe operation.

3.4.2 A Policy Example. Several built-in policies have been imple-
mented such as Greedy Depth-First Search (DFS), Greedy Breadth-
first Search (BFS) and Random approaches. As an example, the
Greedy DFS Policy implements a greedy DFS exploration strategy
based on PTG. In this policy, the state space S is set to PTG, which
provides both the GUImodel of pages and their transitions, enabling
the Greedy DFS policy to consider individual widgets and backtrack
to high-value pages when encountering dead ends, thereby achiev-
ing high coverage. Additionally, we customize the score function
in pipeline 𝜋 based on widgets and their associated weights. The
detailed steps are summarized as follows:
• Candidate. The algorithm scans all unvisited components on the
current page and evaluates possible executable events based on
component attributes. For example, if there is a clickable com-
ponent on the current page, a ClickEvent for this component is
added to the candidate set.

• Filter . The algorithm filters out events that have been executed
on the current page.

• Backtrack (optional). The algorithm backtracks to the nearest
unexplored page in the PTG if no available event.

• Score. The algorithm sorts the events in descending order based
on their scores calculated via the following scoring function.

Score =
∑︁

(property𝑖 ×weight𝑖)
where property𝑖 denotes the 𝑖-th property and weight𝑖 denotes
its corresponding weight.

• Select. The event with the highest score is selected. The entire
pipeline loops until running time is exhausted.

4 Evaluation
We now evaluate the effectiveness of HapTest. For the sake of sim-
plicity, we evaluate HapTest, although it is designed as a framework
that ideally requires users to provide a testing policy, by considering
that it has integrated a testing strategy (i.e., in our case, one of the
pre-implemented testing policies). Specifically, we aim to answer
the following three research questions.
• RQ1: How effective is HapTest in supporting dynamic analysis
of OpenHarmony apps?

• RQ2:How complete is HapTest in generating the Page Transition
Graph, which is considered crucial for app testing approaches?

• RQ3: Can HapTest be leveraged to detect quality issues in real-
world OpenHarmony apps?
These three RQs systematically evaluate our framework from

fundamental capabilities to practical applications. The key metrics
for evaluating our dynamic analysis framework are code coverage
and PTG generation. Therefore, RQ1 validates the basic testing
effectiveness through coverage metrics, while RQ2 examines the
framework’s core technical innovation in PTG generation. RQ3

moves into practical validation by finding crash detection on widely
used commercial applications.

4.1 Evaluation setup
This section introduces the general evaluation setup for our evalu-
ated experiments.

4.1.1 Data Collection. Due to the current lack of publicly available
OpenHarmony application datasets, we have to build such a dataset
from scratch. To this end, in this work, we collect test data from two
dimensions: open-source applications and commercial applications.

Table 2: Details of Selected Applications

Application Name Source Stars LOC
Wechat_HarmonyOS [4] GitHub 354 2,576
Msea [19] GitHub 47 752
OhBill [18] Gitee 123 1,374
CanvasComponent Codelabs 1,700 955
SwiperArkTS Codelabs 1,700 1,238
VideoPlayer Codelabs 1,700 1,963
DistributedContacts Codelabs 1,700 2,502
OxHornCampus Codelabs 1,700 3,736
MultiShopping Codelabs 1,700 5,104
HealthyLife Codelabs 1,700 5,128

For open source apps, as Table 2 shows, we gather data from
two sources: (1) the official Codelabs [10] example repository; (2)
individual development projects from the Gitee [44] and the GitHub
platform. For commercial apps, we select the top 20 applications
by download count from the official App Gallery, which cover a
wide range of daily scenarios and have varying requirements for
security and stability.

4.1.2 Experiment Environment. Our framework, along with the
apps under testing, are evaluated on HUAWEI Mate60 device run-
ning the latest OpenHarmony (i.e., 5.0.0).

4.1.3 Execution Time. The execution time for RQ1 and RQ2 is set
to ten minutes and we repeat three times. The execution time for
RQ3 is set to one hour and we repeat three times. HapTest stops
only when the exploration is complete or the configured execution
time is reached.

4.2 RQ1: Effectiveness on Coverage
Coverage capability is one of the core aims for the dynamic anal-
ysis techniques. So, we first design an experiment to evaluate the
coverage capabilities of our framework on 10 open-source apps
using a random exploration strategy.

4.2.1 Special setup for RQ1. We employ four metrics related to
coverage: Statement coverage, Function coverage, and Branch
coverage, which are commonly used in software testing. Addi-
tionally, we introduce UIAbility coverage, defined as the ratio
between the number of UIAbilities obtained by aggregating pages
belonging to the same UIAbility in the PTG during the experi-
ment and the number of UIAbilities identified through the static
analysis program’s UIAbility class.

https://github.com/ausboyue/Wechat_HarmonyOS
https://github.com/eternaljust/Msea_HarmonyOS
https://gitee.com/ericple/oh-bill

HapTest: The Dynamic Analysis Framework for OpenHarmony FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Figure 4: Coverage variation with event execution steps during exploration. The x-axis represents the event execution steps, and the y-axis
shows four metrics about coverage.

Table 3: UIAbility and Transition statistics for different apps (sorted by page number descending)

Application Unaggregated data of d-PTG UIAbilities Transitions
Page

Number
Transition
Number Shared s-PTG

Only
d-PTG
Only Shared s-PTG

Only
d-PTG
Only

Wechat_HarmonyOS 25 108 5 0 0 5 0 7
MultiShopping 25 88 2 0 4 2 0 15
OxHornCampus 14 51 2 1 1 1 0 5
OhBill 9 18 3 0 1 2 1 3
Msea 8 22 2 0 1 2 2 5
HealthyLife 7 21 4 0 0 3 0 5
SwiperArkTS 5 23 0 0 2 0 0 4
VideoPlayer 5 10 1 0 1 1 0 3
DistributedContacts 3 4 0 0 2 0 0 3
CanvasComponent 2 4 0 0 1 0 0 1

4.2.2 Results and Analysis. As shown in Figure 4, the results high-
light a high performance in overall code coverage achieved by our
framework, across all the application types. Specifically, line cov-
erage ranges from 40% to 90%, with function and branch coverage
also demonstrating exceptional performance. Notably, UIAbility
coverage almost approaches 100%, underscoring the framework’s
effectiveness in capturing the primary user interface interactions.
The coverage shows a gradually increasing trend, particularly in
multi-module and multi-page applications like MultiShopping [10]
and WeChat [4]. However, we also observe a long-tail phenomenon
in certain cases, e.g., SwiperArkTS [10], where initial exploration
yields substantial gains, but coverage improvements plateau sub-
sequently. This underscores the need for more robust exploration
strategies to address deeper logic branches and edge conditions.

Answer for RQ1: Overall, this evaluation demonstrates
the high effectiveness on coverage of our dynamic analy-
sis framework. Our HapTest achieves 100% of UIAbility
coverage.

4.3 RQ2: Completeness on PTG
To evaluate the completeness of dynamically generated PTG (i.e.,
Page Transition Graph), we can compare this PTG with the PTG
obtained through static code analysis. However, there are no tools

available for obtaining static PTG for OpenHarmony apps. There-
fore, we first implement a tool to construct static PTGs, and then
proceed with the comparison.

4.3.1 Static PTG construction. The static PTG is obtained by analyz-
ing the application’s source code. We use the static analysis method
for GUI testing on OpenHarmony apps proposed in [8]. Specifically,
our static tool first utilizes ArkAnalyzer [7] to obtain view trees and
call graphs. Next, the tool discovers page files by identifying classes
decorated with the @Entry and @Component decorators. Then, the
tool examines onClick event handlers to identify page naviga-
tion APIs containing router.pushUrl, router.replaceUrl, and
router.back. To find all possible page transition paths, the tool
also examines the call graph to trace indirect navigation through
method invocations.

4.3.2 Special setup for RQ2. We generate a dynamic PTG (denoted
as “d-PTG”) by running the dynamic analysis program and compare
it with the static PTG (denoted as “s-PTG”). Note that, the node types
in s-PTG are not Page but UIAbility, as static analysis methods
can only specify down to the UIAbility level. For simplicity, we
still refer to it as PTG. To facilitate comparison, we aggregate the
Page in the d-PTG that belong to the same UIAbility, enabling a
comparison between s-PTG and d-PTG at the UIAbility level.

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Farong Liu, Mingyi Zhou, Yakun Zhang, Ting Su, Bo Sun, Jacques Klein, Xiang Gao, and Li Li

Table 4: Testing results of top popular commercial apps

ID App Category Downloads Cpp ArkTS Freeze Total
Name Crash Crash

1 WeChat Messaging&Payment 3M 0 0 0 0
2 Taobao E-commerce 3M 0 0 0 0
3 Douyin Media 3M 2 3 2 7
4 AutoNavi Maps Travel 3M 3 2 0 5
5 Alipay Payment 3M 0 0 0 0
6 RedNote Media 3M 0 0 0 0
7 Meituan E-commerce 2M 0 0 0 0
8 Pinduoduo E-commerce 2M 0 0 0 0
9 Bilibili Media 2M 1 1 0 2
10 Ctrip Travel 2M 0 1 1 2
11 Ximalaya Media 2M 0 3 0 3
12 Weibo Media 2M 0 1 0 1
13 Kuaishou Media 2M 0 0 0 0
14 Toutiao News News 2M 0 1 0 1
15 Dianping Food Delivery 1M 1 0 0 1
16 DingTalk Messaging 1M 2 0 0 2
17 Didi Travel 1M 0 0 0 0
18 Baidu App News 1M 1 0 0 1
19 Eleme Food Delivery 1M 0 0 0 0
20 Feishu Messaging 0.3M 0 1 0 1

Total (11/20 Apps with Issues) 10 13 3 26

4.3.3 Results and Analysis. As Table 3 shows that there are no
UIAbilities and Transitions exclusive to s-PTG for the majority
of apps. This indicates that d-PTG has almost no missed reports.
Additionally, many UIAbilities and Transitions are unique to d-PTG
(8 out of 10 for UIAbilities and 10 out of 10 apps for Transitions). This
suggests that d-PTG has numerous unique relationships, which may
be due to static analysis methods being unable to recognize some
dynamic components and navigations within pages. Moreover, the
number of Pages is significantly greater than that of UIAbilities,
indicating many Pages share a single UIAbility. This aligns with
the development paradigm of OpenHarmony.

Answer for RQ2: Our framework is capable of compre-
hensively analyzing programs and generating a d-PTG.
The d-PTG is more comprehensive than the s-PTG and can
be used to guide more complex exploration strategies.

4.4 RQ3: Testing on Commercial Apps
Our HapTest is designed to effectively test real-world commercial
OpenHarmony apps. To evaluate it, we use the Greedy DFS Policy
to detect the unknown crashes based on our framework.

4.4.1 Special setup for RQ3. In RQ3, we use the Greedy DFS Policy
that is shown in the Section 3.4.2. We collect top 20 commercial
apps from AppGallery. Most of the apps have been downloaded
more than 1 million times. As these apps just officially launched
starting on October 23, 2024, these download numbers will expo-
nentially increase to a huge figure in a short time. We categorize
crashes into ArkTS Crashes and Cpp Crashes based on the type of
program stack when process crash, as well as Freezes that indicate
unresponsiveness:

• ArkTS Crash: ArkTS Crash typically results from unhandled
ArkTS exceptions, including type errors, syntax errors, and ref-
erence errors; Note that this type of error is referred to as a "JS
Crash" by the official documentation, as ArkTS is compiled into
JavaScript for execution. Here, for clarity, we use "ArkTS Crash".

• C++ Crash (Cpp Crash): Cpp Crash is primarily based on POSIX
signal mechanisms, involving illegal instructions, memory access
errors, and floating-point exceptions.

• Freezes: Freezes manifest as unresponsive app interfaces, poten-
tially caused by main thread blocking, input response delays, or
lifecycle transition timeouts.

4.4.2 Results. The testing results of ourmethod on the top commer-
cial OpenHarmony apps are shown in Table 4. In stability testing of
20 mainstream applications, 26 issues are identified across 11 apps.
These include 13 ArkTS crashes, 10 C++ crashes, 3 freezes. Douyin
shows the largest number (i.e., 7) of issues, followed by AutoNavi
Maps (i.e., 5) and Ximalaya (i.e., 3). Highly downloaded apps like
WeChat, Taobao, and Alipay demonstrate stable performance with
no issues detected.

4.4.3 Analysis. By issue type, ArkTS crashes account for the largest
number of issues, representing the primary stability concern, re-
flecting widespread challenges in frontend code quality control.
C++ crashes mainly occur in scenarios requiring intensive native
computations, such as map and video apps. Freeze issues are rel-
atively rare and only appear in specific apps, as freezes typically
only occur when there are serious performance issues. By down-
load volume, the most popular apps WeChat and Taobao show
high stability, but Douyin and AutoNavi Maps do not. The distri-
bution of issues indicates no simple linear relationship between
download volume and application stability. By application category,
media applications (e.g., Douyin, Bilibili, Ximalaya, etc.) show over-
all poor performance, which may be attributed to their complex
media processing requirements and frequent feature updates. In
contrast, e-commerce apps (e.g., Taobao, Pinduoduo, Meituan) and
payment apps (e.g., WeChat, Alipay) demonstrate exceptional sta-
bility regardless of their download volumes, with no issues detected.
This can be attributed to e-commerce platforms’ high emphasis on
transaction security and code quality.

Answer for RQ3: Our framework can effectively test the
real-world commercial OpenHarmony apps and analyze
the issue. Our HapTest identified 26 issues across 11 top
commercial apps.

5 Discussion
In this section, we will conduct a case study to analyze the utility
of our HapTest and discuss the threats to validity.

5.1 Utility of HapTest
From RQ1 to RQ3, we have shown that users can get effective code
coverage and GUI testing results based on our proposed HapTest.
Our framework can be easily adopted to other applications, such
as performance analysis and security analysis. To further show the
utility of HapTest, we use performance analysis tool as an example
to explain how to build a useful tool based on our dynamic analysis
framework.

5.2 Utility of HapTest
From RQ1 to RQ3, we demonstrated HapTest’s effectiveness for
code coverage, PTG generation, and crash detection based on its

HapTest: The Dynamic Analysis Framework for OpenHarmony FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

integrated testing policies. Furthermore, the framework’s modular
design and provided APIs facilitate its adaptation for building other
dynamic analysis tools, such as those for performance or security
analysis.

This extensibility stems from the framework’s core components.
For instance, developers can leverage the Code Instrumentation
Module (CIM) to inject custom monitoring logic (e.g., performance
timers or security checks) into specific points of the application
code. Concurrently, the DataCollector component can be utilized
to manage, store, and retrieve the data during dynamic execution.

As a brief conceptual example, one could build a performance
analysis tool by using CIM to instrument UI lifecycle callbacks (e.g.,
aboutToAppear, build) to measure rendering times or memory
consumption. Data collected via DataCollector could then reveal
performance bottlenecks. Our own preliminary investigation using
such an approach on the OxHornCampus app [45] indicated that
specific components (such as ImageAnimate and ZonesComponent)
exhibited higher resource usage, demonstrating how HapTest can
serve as a foundation for targeted analyses beyond the core evalu-
ations presented earlier. This highlights the potential for users to
easily develop custom dynamic analysis solutions tailored to their
specific needs by building upon the HapTest framework.

Answer for this discussion: Our framework is easy to
use for building other tools based on dynamic analysis.
Based on our HapTest framework, users only need a few
lines of code to implement a concrete performance analysis
tool.

5.3 Threat to Validity
5.3.1 Internal. Our work is hard to detect all the crashes of Open-
Harmony apps, thus our analysis on issue type and the relationship
between the download volume and the number of issues may not
be accurate.

5.3.2 External. As OpenHarmony is still in early development
stage, it is hard to find plenty of open source OpenHarmony app.
The scale of open source applications in the evaluation is relatively
small. In addition, the ArkTS, OpenHarmony, and its apps are under-
going rapid changes, our method thus needs to update frequently
to support the analysis for future OpenHarmony apps.

6 Related work
Since OpenHarmony is still a relatively new system with limited
investment, we turn to previous research and perspectives from
the Android ecosystem. Dynamic analysis plays a crucial role in
ensuring software quality, making it a prominent andwidely studied
topic. Here, we will introduce the studies that use testing methods
to find software issues.

Search-based Testing Approaches. Traditional dynamic anal-
ysis methods primarily rely on various search strategies to explore
application behaviors. The most fundamental approach is repre-
sented by Android’s built-in Monkey tool [15], which employs ran-
dom sampling for event generation. This approach has evolved into
more sophisticated strategies, as demonstrated by Dynodroid [29],

which introduced feedback-directed testing to prioritize contextu-
ally relevant events. The emergence of model-based testing, exem-
plified by AndroidRipper [1] and APE [23], marked a significant
advancement by constructing and utilizing GUI models for system-
atic exploration. These approaches typically represent applications
as finite state machines, enabling more structured testing processes.
The field further progressed with systematic testing methods like
Sapienz [31], which employs multi-objective search algorithms to
optimize testing criteria such as code coverage and crash detec-
tion efficiency. These search-based approaches, while effective in
their respective domains, often struggle with the fundamental chal-
lenge of balancing exploration breadth and testing depth, which
motivates our design of HapTest’s adaptive exploration strategies.

Intelligence-driven Testing Approaches. Recent years have
witnessed a paradigm shift towards intelligence-driven testing ap-
proaches, marking a departure from traditional search-based meth-
ods. This evolution began with machine learning-based solutions
such as SwiftHand [9], which learns GUI models from execution
traces to guide testing decisions. The integration of deep learning,
as demonstrated by Humanoid [27], enabled more sophisticated un-
derstanding of UI patterns and user behaviors. The field has recently
experienced another transformation with the emergence of LLM-
based testing approaches. Notable works like AutoDroid [46] and
GPTDroid [28] leverage large language models to comprehend UI
semantics and generate contextually appropriate test cases. These
intelligence-driven approaches demonstrate superior capabilities
in understanding application context and generating meaningful
test scenarios. This evolution towards intelligent testing systems
has significantly influenced our design of HapTest, particularly in
its ability to maintain comprehensive state information that can
support future integration with advanced AI techniques.

7 Conclusion
In this study, we propose the first dynamic analysis framework
HapTest for OpenHarmony apps. Our framework has four main
modules: Code Instrumentation Module, Event Generation Module,
Data Processing Module, and Executor. Our method implements
many testing policies, such as Greedy DFS. In addition, it provides
APIs to support building other useful tools such as a performance
analyzer by only a few lines of code. Our evaluations show that
HapTest achieves both high code coverage and complete PTG gener-
ation. In top commercial apps, our HapTest revealed 26 previously
unreported crashes in 11 out of the 20 apps. In future, we will
continue to update our framework to facilitate future research on
OpenHarmony.

Acknowledgments
This work is partially supported by the National Key Research and
Development Program of China (No. 2024YFB4506300).

References
[1] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M Memon. 2012. Using GUI ripping for automated test-
ing of Android applications. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. 258–261.

[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M Memon. 2014. MobiGUITAR: Automated model-based testing of
mobile apps. IEEE software 32, 5 (2014), 53–59.

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Farong Liu, Mingyi Zhou, Yakun Zhang, Ting Su, Bo Sun, Jacques Klein, Xiang Gao, and Li Li

[3] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. 1–11.

[4] ausboyue. 2024. Wechat HarmonyOS. https://github.com/ausboyue/Wechat_
HarmonyOS. Accessed on: 2025-01-01.

[5] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems languages &
applications. 641–660.

[6] Young-Min Baek and Doo-Hwan Bae. 2016. Automated model-based android
gui testing using multi-level gui comparison criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering. 238–249.

[7] Haonan Chen, Daihang Chen, Yizhuo Yang, Lingyun Xu, Liang Gao, Mingyi Zhou,
Chunming Hu, and Li Li. 2025. ArkAnalyzer: The Static Analysis Framework for
OpenHarmony. arXiv:2501.05798 [cs.SE] https://arxiv.org/abs/2501.05798

[8] Yige Chen, Sinan Wang, Yida Tao, and Yepang Liu. 2024. Model-Based GUI
Testing for HarmonyOS Apps. In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering. 2411–2414.

[9] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided gui testing of
android apps with minimal restart and approximate learning. Acm Sigplan
Notices 48, 10 (2013), 623–640.

[10] HarmonyOS Codelabs. 2024. the official HarmonyOS Codelabs example reposi-
tory. https://gitee.com/harmonyos/codelabs. Accessed on: 2025-01-01.

[11] OpenHarmony Community. 2025. OpenHarmony. https://www.openharmony.
cn/. Accessed: 2025-01-15.

[12] Wikipedia Contributors. 2024. Remote Procedure Call (RPC). https://en.wikipedia.
org/wiki/Remote_procedure_call. Accessed on: 2025-01-01.

[13] Android Developers. 2024. Android Debug Bridge (adb). https://developer.
android.com/tools/adb. Accessed on: 2025-01-01.

[14] Android Developers. 2024. UI Automator Testing. https://developer.android.com/
training/testing/other-components/ui-automator. Accessed on: 2025-01-11.

[15] Android Developers. 2024. UI/Application Exerciser Monkey. https://developer.
android.com/studio/test/monkey. Accessed on: 2025-01-01.

[16] HarmonyOS Developers. 2024. HDC (HarmonyOS Device Connector). https:
//developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/hdc-V5. Ac-
cessed on: 2025-01-01.

[17] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel testing of android apps. In Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering. 481–492.

[18] ericple. 2024. oh-bill. https://gitee.com/ericple/oh-bill. Accessed on: 2025-01-01.
[19] eternaljust. 2024. Msea HarmonyOS. https://github.com/eternaljust/Msea_

HarmonyOS. Accessed on: 2025-01-01.
[20] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android

testing via synthetic symbolic execution. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 419–429.

[21] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information flow analysis of android applications in
droidsafe.. In NDSS, Vol. 15. 110.

[22] Tianxiao Gu, Chun Cao, Tianchi Liu, Chengnian Sun, Jing Deng, Xiaoxing Ma,
and Jian Lü. 2017. Aimdroid: Activity-insulated multi-level automated testing
for android applications. In 2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). IEEE, 103–114.

[23] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of An-
droid applications via model abstraction and refinement. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 269–280.

[24] Ltd. Huawei Technologies Co. 2024. DevEco Studio - Integrated Development En-
vironment for HarmonyOS. https://developer.huawei.com/consumer/cn/deveco-
studio/. Accessed on: 2025-01-11.

[25] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017. Static analysis of
android apps: A systematic literature review. Information and Software Technology
88 (2017), 67–95.

[26] Li Li, Xiang Gao, Hailong Sun, Chunming Hu, Xiaoyu Sun, HaoyuWang, Haipeng
Cai, Ting Su, Xiapu Luo, Tegawendé F Bissyandé, et al. 2023. Software engineering
for openharmony: A research roadmap. arXiv preprint arXiv:2311.01311 (2023).

[27] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
deep learning-based approach to automated black-box android app testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1070–1073.

[28] Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che,
Dandan Wang, and Qing Wang. 2024. Make llm a testing expert: Bringing
human-like interaction to mobile gui testing via functionality-aware decisions. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering.
1–13.

[29] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. 224–234.

[30] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 599–609.

[31] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated
testing for android applications. In Proceedings of the 25th international symposium
on software testing and analysis. 94–105.

[32] Atif M Memon, Mary Lou Soffa, and Martha E Pollack. 2001. Coverage criteria
for GUI testing. In Proceedings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium on Foundations of
software engineering. 256–267.

[33] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-
dome, and Denys Poshyvanyk. 2016. Automatically discovering, reporting and
reproducing android application crashes. In 2016 IEEE international conference on
software testing, verification and validation (icst). IEEE, 33–44.

[34] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-
dome, and Denys Poshyvanyk. 2017. Crashscope: A practical tool for automated
testing of android applications. In 2017 IEEE/ACM 39th international conference
on software engineering companion (ICSE-C). IEEE, 15–18.

[35] OpenHarmony. 2025. Stage Model Development Overview. https:
//docs.openharmony.cn/pages/v5.0/zh-cn/application-dev/application-
models/stage-model-development-overview.md. Accessed on: 2025-01-
15.

[36] Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Olabode Anise, Rahul
Bobhate, Raymond Cho, Hiranava Das, Sharique Hussain, Hamza Karachiwala,
Nolen Scaife, et al. 2016. * droid: Assessment and evaluation of android application
analysis tools. ACM Computing Surveys (CSUR) 49, 3 (2016), 1–30.

[37] Andrea Romdhana, Mariano Ceccato, Gabriel Claudiu Georgiu, Alessio Merlo,
and Paolo Tonella. 2021. Cosmo: Code coverage made easier for android. In 2021
14th IEEE conference on software testing, verification and validation (ICST). IEEE,
417–423.

[38] Raimondas Sasnauskas and John Regehr. 2014. Intent fuzzer: crafting intents
of death. In Proceedings of the 2014 Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing, Debugging, and
Analytics (PERTEA). 1–5.

[39] Julian Schütte, Rafael Fedler, and Dennis Titze. 2015. Condroid: Targeted dynamic
analysis of android applications. In 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications. IEEE, 571–578.

[40] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th joint meeting on foundations of
software engineering. 245–256.

[41] Ting Su, Jue Wang, and Zhendong Su. 2021. Benchmarking automated GUI
testing for Android against real-world bugs. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 119–130.

[42] Xiaoyu Sun, Li Li, Tegawendé F Bissyandé, Jacques Klein, Damien Octeau, and
John Grundy. 2021. Taming reflection: An essential step toward whole-program
analysis of android apps. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 30, 3 (2021), 1–36.

[43] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The evolution of android malware and android analysis techniques.
ACM Computing Surveys (CSUR) 49, 4 (2017), 1–41.

[44] Gitee Team. 2024. Gitee - Git-based Code Hosting Platform. https://gitee.com/.
Accessed on: 2025-01-11.

[45] HarmonyOS Codelabs Team. 2024. OxHorn Campus - HarmonyOS Sample
Application. https://gitee.com/harmonyos_codelabs/OxHornCampus. Accessed
on: 2025-01-11.

[46] HaoWen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi
Jiang, Yunhao Liu, Yaqin Zhang, and Yunxin Liu. 2024. Autodroid: Llm-powered
task automation in android. In Proceedings of the 30th Annual International Con-
ference on Mobile Computing and Networking. 543–557.

[47] Michelle Y Wong and David Lie. 2016. Intellidroid: a targeted input generator for
the dynamic analysis of android malware.. In NDSS, Vol. 16. 21–24.

[48] Jiwei Yan, Tianyong Wu, Jun Yan, and Jian Zhang. 2017. Widget-sensitive and
back-stack-aware GUI exploration for testing android apps. In 2017 IEEE Inter-
national Conference on Software Quality, Reliability and Security (QRS). IEEE,
42–53.

[49] Chao Chun Yeh, Han Lin Lu, Chun Yen Chen, Kee Kiat Khor, and Shih Kun
Huang. 2014. Craxdroid: Automatic android system testing by selective symbolic
execution. In 2014 IEEE Eighth International Conference on Software Security and
Reliability-Companion. IEEE, 140–148.

[50] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and
William GJ Halfond. 2019. Recdroid: automatically reproducing android applica-
tion crashes from bug reports. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 128–139.

https://github.com/ausboyue/Wechat_HarmonyOS
https://github.com/ausboyue/Wechat_HarmonyOS
https://arxiv.org/abs/2501.05798
https://arxiv.org/abs/2501.05798
https://gitee.com/harmonyos/codelabs
https://www.openharmony.cn/
https://www.openharmony.cn/
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/hdc-V5
https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/hdc-V5
https://gitee.com/ericple/oh-bill
https://github.com/eternaljust/Msea_HarmonyOS
https://github.com/eternaljust/Msea_HarmonyOS
https://developer.huawei.com/consumer/cn/deveco-studio/
https://developer.huawei.com/consumer/cn/deveco-studio/
https://docs.openharmony.cn/pages/v5.0/zh-cn/application-dev/application-models/stage-model-development-overview.md
https://docs.openharmony.cn/pages/v5.0/zh-cn/application-dev/application-models/stage-model-development-overview.md
https://docs.openharmony.cn/pages/v5.0/zh-cn/application-dev/application-models/stage-model-development-overview.md
https://gitee.com/
https://gitee.com/harmonyos_codelabs/OxHornCampus

	Abstract
	1 Introduction
	2 Background
	2.1 OpenHarmony App
	2.2 ArkTS
	2.3 ArkUI

	3 Approach
	3.1 Code Instrumentation Module (CIM)
	3.2 Executor Module (EM)
	3.3 Data Processing Module
	3.4 Event Generation Module

	4 Evaluation
	4.1 Evaluation setup
	4.2 RQ1: Effectiveness on Coverage
	4.3 RQ2: Completeness on PTG
	4.4 RQ3: Testing on Commercial Apps

	5 Discussion
	5.1 Utility of HapTest
	5.2 Utility of HapTest
	5.3 Threat to Validity

	6 Related work
	7 Conclusion
	Acknowledgments
	References

