
Synthesis-Based Enhancement for GUI Test Case Migration
Yakun Zhang

Key Lab of HCST (PKU), MOE; SCS
Peking University
Beijing, China

zhangyakun@stu.pku.edu.cn

Qihao Zhu
DeepSeek-AI
Beijing, China

zhuqh@pku.edu.cn

Jiwei Yan
Technology Center of Software

Engineering, Institute of Software,
Chinese Academy of Sciences

Beijing, China
yanjiwei@otcaix.iscas.ac.cn

Chen Liu
Key Lab of HCST (PKU), MOE; SCS

Peking University
Beijing, China

cissieliu@stu.pku.edu.cn

Wenjie Zhang
Key Lab of HCST (PKU), MOE; SCS

Peking University
Beijing, China

zhang_wen_jie@pku.edu.cn

Yifan Zhao
Key Lab of HCST (PKU), MOE; SCS

Peking University
Beijing, China

zhaoyifan@stu.pku.edu.cn

Dan Hao
Key Lab of HCST (PKU), MOE; SCS

Peking University
Beijing, China

haodan@pku.edu.cn

Lu Zhang∗
Key Lab of HCST (PKU), MOE; SCS

Peking University
Beijing, China

zhanglucs@pku.edu.cn

Abstract
GUI test case migration is the process of migrating GUI test cases
from a source app to a target app for a specific functionality. How-
ever, test cases obtained via existing migration approaches can
hardly be directly used to test target functionalities and typically
require additional manual modifications. This problem may signifi-
cantly impact the effectiveness of testing target functionalities and
the practical applicability of migration approaches.

In this paper, we propose MigratePro, the first approach to en-
hancing GUI test case migration via synthesizing a new test
case based on multiple test cases for the same functionality
migrated from various source apps to the target app. The aim of
MigratePro is to produce functional test cases with less human
intervention. Specifically, given multiple migrated test cases for the
same functionality in the target app, MigratePro first combines all
the GUI states related to these migrated test cases into an overall
state-sequence. Then, MigratePro organizes events and assertions
from migrated test cases according to the overall state-sequence
and endeavors to remove the should-be-removed events and asser-
tions, while also incorporating some connection events in order to
make the should-be-included events and assertions executable. Our
evaluation on 30 apps, 34 functionalities, and 127 test cases shows
that MigratePro improves the capability of three representative

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680327

migration approaches (i.e., Craftdroid, AppFlow, ATM), success-
fully improving testing the target functionalities by 86%, 333%, and
300%, respectively. These results underscore the generalizability of
MigratePro for effectively enhancing migration approaches.

CCS Concepts
• Software and its engineering→ Software testing and debugging.

Keywords
Test migration, GUI testing, Synthesis

ACM Reference Format:
Yakun Zhang, Qihao Zhu, Jiwei Yan, Chen Liu, Wenjie Zhang, Yifan Zhao,
Dan Hao, and Lu Zhang. 2024. Synthesis-Based Enhancement for GUI
Test Case Migration. In Proceedings of the 33rd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’24), September
16–20, 2024, Vienna, Austria. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3650212.3680327

1 Introduction
GUI (Graphical User Interface) testing is an important way to test
the functionalities of mobile apps [13, 47]. A functional GUI test
case consists of one or more ordered events and assertions [14, 30].
The events aim to explore a functionality of GUI widgets, and the
assertions aim to check whether the outcomes of these events sat-
isfy the expectations of users. During the execution of events and
assertions in a test case, a series of GUI states are correspondingly
triggered. Developers typically developmultiple functionalities (e.g.,
sign-in) for an app. In this paper, we define the target functionality
of a test case as the functionality that the test case aims to check.
In general, constructing GUI test cases manually is labor-intensive
and time-consuming [19, 31, 39]. However, automated GUI test
generation approaches [10, 17, 28, 35, 45] can hardly generate ora-
cles. To reduce the cost of manually writing GUI test cases, several
migration approaches [14, 22, 30, 32, 36, 37, 53] have been proposed

869

https://doi.org/10.1145/3650212.3680327
https://doi.org/10.1145/3650212.3680327
https://doi.org/10.1145/3650212.3680327

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yakun Zhang, Qihao Zhu, Jiwei Yan, Chen Liu, Wenjie Zhang, Yifan Zhao, Dan Hao, and Lu Zhang

to migrate GUI test cases from a source app to a target app that
shares the same functionalities.

Despite advancements in migration approaches, using migrated
test cases to test functionalities still encounters a significant prob-
lem. The aim of test case migration is to successfully test function-
alities in the target app, e.g., the sign-in functionality. However, our
preliminary study, which focuses on evaluating the effectiveness
of migration approaches (detailed in Section 2), indicates that at
least 57% of the migrated test cases generated by the representative
migration approaches [22, 30] are incomplete or buggy, thus cannot
be directly used for functional testing. Therefore, users may need
additional manual modifications to meet their expectations [54].
This problem negatively impacts the effectiveness of migration
approaches in real-world scenarios.

Considering the significant disparity between the test cases gen-
erated by existing migration approaches [14, 22, 30, 32, 36, 37] and
their target functionalities, it is crucial to provide a unified approach
to enhance these approaches. Two intuitions from our preliminary
study may help address this problem. First, combining migrated test
cases may be promising as this process may provide more should-
be-included events and assertions, which are required to test
the target functionality. Second, this process may also introduce
more should-be-removed events and assertions, which do not
contribute to the testing of the target functionality and may even
hinder the execution of the generated test case.

Based on the two intuitions, we propose MigratePro, the first
approach to enhancing test case migration by synthesizing new
test cases from the migrated test cases, which are generated by
migration approaches, to successfully test the target functionalities.

Given a target app and multiple migrated test cases for
one functionality, we design a two-stage generation strategy
for MigratePro to synthesize a new test case for the functionality.
First, in the stage of test case generation, MigratePro collects
the GUI states that include all the widgets from the migrated test
cases. This way enables MigratePro to collect the states related
to the target functionality. Then, it combines these states into a
state graph and extracts the overall state-sequence from the state
graph for testing the target functionality. Furthermore, MigratePro
organizes the events and assertions from the migrated test cases
according to the overall state-sequence, and forms a base test case.
Second, in the stage of test case adjustment, the base test case is
adjusted by removing the should-be-removed events and assertions,
and also incorporating the connection events, which are crucial
for bridging the sequentially-executed events and assertions, to
increase the executability for the should-be-included events and
assertions in the sequence. MigratePro deems the adjusted sequence
as the new test case synthesized for testing the target functionality.

We conduct a comprehensive evaluation to analyze the effec-
tiveness of MigratePro in enhancing test case migration using 30
real-world apps, 34 functionalities, and 127 test cases. MigratePro
is applied to enhance the migrated test cases from three represen-
tative migration approaches, i.e., Craftdroid [30], AppFlow [22],
and ATM [14], respectively. Compared to these three approaches,
MigratePro substantially increases the number of test cases that
can successfully test the target functionalities, with improvements
of 86%, 333%, and 300%, respectively. MigratePro also enhances
the test cases that align with the corresponding ground-truth test

cases (which are written by developers), by 28%, 217%, and 100%,
respectively. Additionally, we also compare Craftdroid enhanced by
MigratePro with two recent migration approaches, i.e., TRASM [32]
and Adaptdroid [37], to evaluate the effectiveness of the enhanced
results by MigratePro. The results show that Craftdroid enhanced
by MigratePro outperforms these two approaches by more than 45%
in availability and 31% in coverage. Furthermore, we evaluate the
generalizability of MigratePro on five new apps. Compared to the
original Craftdroid, using MigratePro shows a substantial improve-
ment of 329% in availability and 100% in coverage. Overall, these
results demonstrate that MigratePro is effective and generalizable
to enhance test case migration for industry apps.

This paper makes the following main contributions:
• This paper presents a preliminary study that investigates
the effectiveness of three representative test migration ap-
proaches in industry apps. This study complements prior
studies on test case migration and points out the gaps be-
tween the test cases generated by existing migration ap-
proaches and their target functionalities.

• This paper introduces MigratePro, the first approach to en-
hancing test case migration, aiming to synthesize new test
cases that can successfully test target functionalities for dif-
ferent migration approaches. MigratePro bridges the gap
between the migrated test cases from existing migration
approaches and usable functional test cases.

• We conduct an empirical evaluation on real-world apps to
validate the effectiveness of MigratePro. The evaluation re-
sults demonstrate that MigratePro has good effectiveness
and generalizability for enhancing test case migration.

2 Preliminary Study
Existing evaluations of migration approaches [14, 22, 30, 32, 37]
mainly focus on evaluating precision and recall of events and as-
sertions in the migrated test cases, but ignore the effectiveness of
these test cases for testing the target functionalities in real-world
scenarios. However, high precision and recall of event migration
may not necessarily result in high effectiveness of these migrated
test cases. For example, a migration approach correctly migrates
seven out of ten events in a migrated test case, resulting in a re-
call of 70% for event migration. Despite this high recall rate, the
migrated test case still fails to test the target functionality as the
three missed events may be essential for testing the functionality.

To investigate the effectiveness of existing migration approaches
in real-world scenarios, we undertake a preliminary study. Our
investigation aims to answer the research question: What is the
effectiveness of existing migration approaches in real-world scenarios?

2.1 Experimental Setup
In test case migration, two datasets are predominantly used, i.e., the
Lin dataset1 [6] and the FrUITeR dataset [7]. We use them as our
experimental objects. For a comprehensive assessment, we employ
all migration approaches that have the complete migration results
on these two datasets. Thus, we utilize Craftdroid [30], ATM [14],
and AppFlow [22] as the objects of our study.

1The dataset provided by Lin et al. [30] has not been named by the authors. For the
sake of clarity, we refer to this dataset as the “Lin dataset” in this paper.

870

Synthesis-Based Enhancement for GUI Test Case Migration ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: Evaluation of representative migration approaches.

Dataset Lin FrUITeR

Approach Craftdroid AppFlow ATM

Typesuc−1 29% (49) 6% (13) 2% (4)
Typesuc−2 14% (24) 0% (1) 2% (5)
Typeunsuc 57% (95) 94% (208) 96% (213)

Total 168 222 222

To accurately calculate the ratio of the migrated test cases gener-
ated by migration approaches that successfully test the target func-
tionalities, we first calculate the ratio of the test cases that align with
the ground-truth test cases. However, test cases that successfully
test one functionality are not necessarily unique. Consequently, for
those test cases that do not exactly match the ground-truth, we
need to further investigate whether they still successfully test their
target functionalities. Accordingly, we classify the migrated test
cases into three types.

• Typesuc−1: The migrated test cases are identical to these
ground-truth test cases for the target functionalities.

• Typesuc−2: The migrated test cases can fully execute and
successfully test the same functionalities as the ground-truth
test cases, but they are somehow different.

• Typeunsuc: The migrated test cases cannot successfully test
the target functionalities.

Evaluation process. To classify the migrated test cases gener-
ated by the migration approaches, we design an evaluation strategy
with a combination of algorithmic check and manual check.

Algorithm check. First, we identify the Typesuc−1 test cases by
comparing the migrated test cases and the corresponding ground-
truth. Second, we execute the remaining migrated test cases and
keep the executable subsequences. Third, we identify the Typesuc−2
test cases based on the functionalities they test. These test cases
may not only include all the events and assertions of the ground-
truth test cases but also additional events and assertions that do
not hinder the testing of the specific functionalities. In some cases,
some events in the ground-truth test cases may be replaced by
additional events with the same effects. A manual check is adopted
to verify these additional events and assertions. The remaining test
cases are classified as Typeunsuc.

Manual check. We invite three volunteers2 to participate in this
study, who have industrial experience in Android programming
ranging from 3 to 5 years. For each manual check, we provide the
volunteers with the migrated test cases, the events to be checked,
the target app, and the corresponding ground-truth test case. Each
volunteer independently checks the events. In cases of disagree-
ment, the volunteers discuss until they reach a consensus.

2.2 Experimental Result
For Craftdroid, using the 168 migrated test cases that Craftdroid
generated on the Lin dataset, we count the numbers of migrated
test cases of the three types based on the definition in Section 2.1.
Our evaluation shows that 29% test cases belong to Typesuc−1 and
2None of the volunteers are co-authors of this paper.

Email

Password

Sign in

Sign in

Browse

Get 15% off your first order!

Popular Deals Hub Recently

 Alice

Browse

Earn Cash

Search

Notifications

Logout

A

Oops!
Please fill in all the fields

OK
E1

A1, E2

A4, E3

A2, E4
A3 E5

E6

S1 S2 S3 S4
E1(email, input), A1(password, display), E2(password, input), E3(sign-in, click), A2(menu, display),

E4(menu, click), A3(alice, display), A4(sign-in, display), E5(back, click), E6(ok, click)

Figure 1: Example of a sign-in functionality.

14% test cases belong to Typesuc−2. This means that only 43% of
test cases successfully test the target functionalities. 57% test cases
belong to Typeunsuc, meaning that they cannot successfully test
the target functionalities. As for AppFlow and ATM, the ratios of
Typeunsuc test cases (94% and 96%) are notably high.

This assessment indicates that existing migration approaches
produce a high proportion of migrated test cases that fail to suc-
cessfully test the target functionalities. Therefore, it is crucial to
improve the effectiveness of existing migration approaches.

To improve the effectiveness of existing migration approaches,
a potential idea is to combine individual migrated test cases for
a target functionality into one test case. There are two intuitions.
First, combining individual test cases may facilitate to enhance the
effectiveness of the migration approaches due to covering more
should-be-included events and assertions. Second, this process
may also cover more should-be-removed events and assertions.
Answer to preliminary study: The effectiveness of existing
migration approaches still needs improvement. Combining in-
dividual test cases may cover more should-be-included events
and should-be-removed events and assertions.

3 MigratePro
3.1 Running Example
We use an example (see Figure 1) to illustrate MigratePro’s approach
for enhancing test cases. This example demonstrates a sign-in func-
tionality for a shopping app in the Lin dataset [6]. We tailor off
some widgets for ease of presentation.

In Figure 1, each event (e.g., E1) corresponds to a widget and an
action. Similarly, each assertion (e.g., A1) corresponds to a widget
and a condition. The ground-truth test case for this functionality
is: {E1, A1, E2, E3, A2, E4, A3}. Briefly, it involves inputting an
email (E1) and a password (E2), clicking the sign-in button (E3),
and then clicking the menu widget (E4), with assertions (A1, A2,
A3) checking the progress through the sign-in state (S1), the main
state (S2), and the account state (S3), respectively.

Craftdroid, utilizing source apps, migrates test cases for the
specific functionality of the target app. We use {A4, E3, A1, E2, E1,
E3, A2, A3}, {A4, A1, E2, E1, E3, E5, A3}, and {E6, E1} as the inputs
to illustrate MigratePro’s approach in the following sections.

3.2 Approach Overview
MigratePro is constructed to synthesize a new test case for a tar-
get app by combining multiple migrated test cases for the same
functionality. These migrated test cases are generated by a migra-
tion approach that migrates different source test cases from their

871

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yakun Zhang, Qihao Zhu, Jiwei Yan, Chen Liu, Wenjie Zhang, Yifan Zhao, Dan Hao, and Lu Zhang

Target App

T1:

T2:

1

T3:

Stage 1: Test Case Generation

Related State
Collection

State Graph
Construction

2

Stage 2: Test Case Adjustment

New Test Case

Base Test Case
Generation

Event/Assertion
Differentiation

Event/Assertion
Removal

Connection Event
Incorporation

Remove

Include

{A4, E3, A1, E2,
E1, E3, A2, A3}

{A4, A1, E2, E1,
E3, E5, A3}

{E6, E1}

Tb: {E6, E1, A1, E2, A4,
E3, A2, A3, A5}

Tn: {E1, A1, E2, A4,
E3, A2, E4, A3}

Base Test Case

Figure 2: Workflow of MigratePro.

corresponding source apps to the target app. Note that, we do not
require the migrated test cases to be fully executable.

We design a two-stage generation strategy for MigratePro to
synthesize new test cases, as depicted in Figure 2. First, in the stage
of test case generation, MigratePro collects a sequence of states
related to the target functionalities for the target app. Based on
the collected states, MigratePro constructs a functionality-specific
state graph. Furthermore, MigratePro generates a base test case
by organizing the events and assertions in the migrated test cases
according to the state graph (see Section 3.3). Second, in the stage of
test case adjustment, given the base test case from the first stage,
MigratePro removes the should-be-removed events and assertions. It
also incorporates some connection events in order that the should-
be-included events and assertions are executable and the new test
case successfully tests the target functionality (see Section 3.4).

This two-stage generation strategy is based on the observation
that successfully executing a test case to test a specific functionality
for a target app involves triggering states in a specific order. The
events and assertions need to be executed in corresponding states.

3.3 Test Case Generation
The inputs of the stage of test case generation comprise a target
app and a group of migrated test cases for one target functionality.
The output is a base test case for this functionality. This stage is
subdivided into three key phases, i.e., related state collection, state
graph construction, and base test case generation (see Figure 2). First,
MigratePro collects a sequence of states that include all widgets in
the migrated test cases. These states are related to the target func-
tionality. Second, MigratePro uses the collected states to construct
the functionality-specific state graph. Third, MigratePro organizes
the events and assertions of the migrated test cases based on the
state graph, and generates a base test case for testing the target
functionality. Note that, MigratePro does not collect all states of
the target app but only the states related to target functionality.

1. Related state collection.MigratePro extracts thewidget of each
event or assertion in themigrated test cases, and obtains a collection
of widgets related to the target functionality. Then, MigratePro uses
two steps to collect two parts of states including these widgets.
The final states are the combination of these states. Corresponding
algorithm is available in our repository [9].

First, MigratePro collects execution-specific states by execut-
ing the migrated test cases. Specifically, MigratePro executes all
the migrated test cases on the target app to get the executable

subsequences, and selects the longest one. When executing the
longest executable subsequence, MigratePro collects states contain-
ing widgets in the migrated test cases. Since the event order of a
migrated test case follows that of its corresponding source test case
(thus probably consistent with the event order for testing the target
functionality), an executable subsequence of a migrated test case is
typically able to test part of the target functionality and provide the
related states. The longest one may provide the most related states.

Second, MigratePro collects exploration-specific states by
exploring the target app. Specifically, for the remaining widgets in
the migrated test cases that are not present in the preceding collected
states, MigratePro uses a greedy-random strategy to explore the
target app, starting from the end-point of the longest executable
subsequence. Then, MigratePro randomly selects a widget in the
current state, and generates an appropriate event (e.g., generating a
click event for a clickable widget). If the triggered state contains the
remaining widgets in the migrated test cases, MigratePro continues
random exploration in this state. Otherwise, MigratePro returns to
the previous state to explore. When the collected states contain all
the remaining widgets, or the exploration time exceeds𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 ,
the exploration stops.

Note that, the effectiveness of the greedy-random strategy de-
pends on two main factors. First, the greedy-random strategy only
needs to explore a relatively small number of states. While there
may be a large number of states in the target app, only those states
relevant to the target functionality but are not collected in the
longest executable subsequence need to be explored. Second, the
migration results are able to constrain the search space. The longest
subsequence provides the basis and exploration direction for the
target functionality. By starting exploration based on this subse-
quence, random exploration within a smaller search space may be
able to efficiently collect related states.

2. State graph construction.MigratePro constructs a functionality-
specific state graph based on the collected states with three steps.

First, for each migrated test case, MigratePro generates an indi-
vidual state-sequence. It matches each widget from the test case
with its corresponding state by checking the widget’s resource-id
in the collected states. Then, MigratePro generates a state-sequence
following the widget order in this test case.

Second, MigratePro utilizes the state-sequences to construct a
directed graph. In the graph, nodes represent states, while edges
represent the relations between states in the state-sequences. The
weight of a node denotes the frequency of a state across various
state-sequences. Likewise, the weight of an edge denotes the fre-
quency of a specific state transition within these state-sequences.

Third, the directed graph may contain cycles. To generate an
overall state-sequence for testing a target functionality, it is neces-
sary to break cycles. Specifically, MigratePro employs a depth-first
search algorithm to detect cycles within the directed graph, and
retains those edges that align with the longest executable sub-
sequence. For those edges that are not aligned with the longest
executable subsequence, MigratePro removes the edge with the
smallest edge weight within each cycle. The rationale behind this
is that edges with lower frequency may imply less relevance for
testing the intended functionality. MigratePro repeats this process
until the directed graph is transformed into a directed acyclic graph.

872

Synthesis-Based Enhancement for GUI Test Case Migration ISSTA ’24, September 16–20, 2024, Vienna, Austria

Note that, it may not be appropriate to directly use the graph ob-
tained through related state collection as the functionality-specific
state graph. Since the state collection involves random exploration,
the state transitions identified through random exploration may
not reflect the state transitions for testing the target functionality.

3. Base test case generation. This phase aims to generate a base
test case for testing the target functionality. To generate the base
test case, MigratePro organizes the events and assertions from the
migrated test cases according to the overall state-sequence. The
migrated test cases provide the events and assertions related to the
target functionality; while the overall state-sequence provides the
testing order for the target functionality. The details of the two
steps for generating the base test case are as follows.

First, MigratePro generates an overall state-sequence by employ-
ing a topological sorting algorithm to organize the states in the
directed acyclic graph. During each iteration, MigratePro identifies
nodes with an in-degree of zero. When multiple nodes meet this
criterion, MigratePro prioritizes those nodes with higher weights.

Second, MigratePro organizes the events and assertions from
the migrated test cases according to the states that the widgets
belong to. For events and assertions associated with widgets in the
same states, MigratePro organizes them according to the widget
locations, following a top-left to bottom-right trajectory [42, 50].
Otherwise, MigratePro organizes them following the order of states
in the overall state-sequence.

Note that, the generated base test case may not always success-
fully test the target functionality, as it may contain some should-
be-removed events and assertions and may lack some should-be-
included ones, which requires further adjustments (see Section 3.4).

Applying the first stage to the example. We illustrate the pro-
cess of this stage using the running example depicted in Figure 1.
First, MigratePro executes three migrated test cases to obtain the
longest executable sequence. During this process, MigratePro col-
lects two related states (i.e., S1 and S2). Among the widgets in
the migrated test cases, only three widgets (i.e., the widgets of
A3, E5, and E6) are not present in S1 and S2. Then, MigratePro
explores the target app from the endpoint of the longest executable
sequence (i.e., from the S2 state) with a greedy-random strategy
to identify states including these three widgets. Thus, MigratePro
collects four related states (i.e., S1 to S4). Second, MigratePro gen-
erates three state-sequences for the three migrated test cases. The
three state-sequences are {S1, S2, S3}, {S1, S3}, {S4, S1}. Based on
the three state-sequences, MigratePro constructs a functionality-
specific state graph. The generated state graph is a directed acyclic
graph. Third, MigratePro utilizes a topological sorting algorithm
to generate the overall state-sequence. The generated overall state-
sequence is {S4, S1, S2, S3}. Furthermore, MigratePro organizes all
the events and assertions from the migrated test cases based on the
overall state-sequence to generate the base test case. The generated
base test case is {E6, E1, A1, E2, A4, E3, A2, A3, E5}.

3.4 Test Case Adjustment
In the stage of test case adjustment, the inputs include a target app,
multiple migrated test cases, and a base test case generated in the
first stage. The output is a new test case that includes a sequence of
ordered events and assertions to test the target functionality. This

stage is divided into three key phases, i.e., event/assertion differentia-
tion, event/assertion removal, and connection event incorporation (see
Figure 2). Specifically, MigratePro starts to differentiate the events
and assertions in the base test case between should-be-included
and should-be-removed ones according to their execution and
frequency information in the migrated test cases. Following this dif-
ferentiation, MigratePro removes the identified should-be-removed
events/assertions from the base test case. It also incorporates con-
nection events into the base test case in order to make the identified
should-be-included events/assertions executable.

1. Event/Assertion differentiation. This phase is to identifywhich
events and assertions in the base test case should be included and
which should be removed. Specifically, for each event or assertion
(denoted as 𝑒𝑏) in the base test case, MigratePro launches the target
app and attempts to execute 𝑒𝑏 . If 𝑒𝑏 can be executed, MigratePro
continues to execute the next one. However, if 𝑒𝑏 cannot be ex-
ecuted (e.g., the widget of 𝑒𝑏 is not present in the current state),
MigratePro focuses on its frequency. If the frequency of 𝑒𝑏 in the
migrated test cases surpasses a 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , it is deemed
as a should-be-included event or assertion but is non-executable.
However, if the frequency of 𝑒𝑏 in the migrated test cases is less
than 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , it is deemed as should-be-removed.

2. Event/Assertion removal. For events and assertions identified
as should-be-removed, MigratePro removes them from the corre-
sponding base test case.

3. Connection event incorporation. For events and assertions iden-
tified as should-be-included but not executable, MigratePro dynam-
ically explores the target app to identify connection events, thus
making these should-be-included events and assertions executable.
Corresponding algorithm is available in our repository [9].

Specifically, MigratePro launches the target app. For each identi-
fied should-be-included event or assertion (denoted as 𝑒𝑖) but not
executable in the base test case, MigratePro first generates a se-
quence of events (denoted as 𝐸) for widgets in the current state
(denoted as 𝑠) according to the widgets’ attributes. Then, MigratePro
randomly selects one event of 𝐸 (denoted as 𝑒𝑠) in state 𝑠 to execute,
and determines whether 𝑒𝑖 can be executed after executing 𝑒𝑠 . If
𝑒𝑖 can be executed, MigratePro appends 𝑒𝑠 and 𝑒𝑖 in the new test
case. We denote 𝑒𝑠 as the connection event for 𝑒𝑖 . Otherwise,
MigratePro backtracks to state 𝑠 , and executes another event of 𝐸.
If all the events of 𝐸 have been executed but still do not identify the
connection events, MigratePro randomly selects one event of 𝐸 to
transition to a new state and tries to identify the connection events
in this state. There are two termination conditions for this process.
First, all the should-be-included events and assertions in the base
test case are executable. Second, when the entire process’s running
time reaches a𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 and the base test case still contains some
non-executable events and assertions, MigratePro removes them to
make the sequence executable. As MigratePro selects events ran-
domly, it repeats the entire process with a 𝑟𝑒𝑝𝑒𝑎𝑡_𝑛𝑢𝑚, and chooses
the shortest sequence as the new test case.

Applying the second stage to the example.We illustrate the pro-
cess of this stage using the running example depicted in Figure 1.
First, MigratePro executes the base test case to differentiate the
should-be-removed and should-be-included events and assertions.
MigratePro identifies two events (i.e., E6 and E5) and one assertion

873

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yakun Zhang, Qihao Zhu, Jiwei Yan, Chen Liu, Wenjie Zhang, Yifan Zhao, Dan Hao, and Lu Zhang

Table 2: Statistics of Benchmark Apps.

Dataset Category App Functionality Test Event Assertion Ave_Size

Lin

Browser 5 2 10 32 20 4M
To-Do 5 2 10 39 15 2M
Shopping 4 2 8 49 26 25M
Mail 4 2 8 33 27 11M
Calculator 5 2 10 33 10 2M

Total 23 10 46 186 98 8M

FrUITeR

News 5 12 42 112 - 22M
Shopping 5 12 39 207 - 20M

Total 10 24 81 319 - 21M

(i.e., A3) that cannot be executed sequentially. Second, E6 and E5 are
identified as should-be-removed events due to their low occurrences
and thus removed. Third, A3, despite being non-executable but of
high-occurrence, is identified as a should-be-included assertion.
MigratePro identifies that when clicking the menu widget (i.e., E4),
the should-be-included assertion (i.e., A3) can be executed. Hence,
the connection event (i.e., E4) is inserted into the base test case just
prior to A3. Finally, the new test case synthesized by MigratePro is
{E1, A1, E2, A4, E3, A2, E4, A3}, which not only executes completely
but also successfully tests the target functionality.

4 Evaluation
Our evaluation aims to study the following research questions.

RQ1: How effective and efficient is MigratePro in enhancing test
case migration for different migration approaches?

RQ2: How effective is MigratePro in enhancing test case migration
for different app categories?

RQ3: How do different techniques in MigratePro affect the effec-
tiveness of MigratePro?

RQ4: How competitive are the enhanced results by MigratePro
compared with related approaches?

4.1 Experimental Setup
Experimental objects. There are already some datasets [1, 4, 6,
7] for evaluating test case migration. We mainly select the Lin
dataset [6] and the FrUITeR dataset [7] as our objects. The Lin
dataset is the most widely-used migration dataset for evaluating
previous migration approaches [30, 32, 36]. The FrUITeR dataset [7]
includes the most functionalities to be tested among the migration
datasets [1, 4, 6, 7]. Both these two datasets provide apps along with
test cases for target functionalities written by developers (i.e., the
ground-truth test cases). The test cases in the Lin dataset contain
events and assertions, while those in the FrUITeR dataset contain
only events. For app selection and test case selection, we consider
all the installable apps and executable test cases provided by the
Lin dataset and the FrUITeR dataset as our experimental objects3.
Table 2 presents the basic statistics of our experimental objects.
Detailed information is available in our repository [9].

Baseline approaches. To evaluate the enhancement ability of
MigratePro in test case migration, we select different migration
approaches. For a comprehensive assessment, we employ all mi-
gration approaches that have the complete migration results on
3The Lin dataset and the FrUITeR dataset share 3 common apps, leading to 30 distinct
popular industrial applications in our experimental objects.

these two datasets. Thus, we utilize Craftdroid [30], ATM [14], and
AppFlow [22]. The inputs of MigratePro are all the migrated test
cases by one migration approach for the target functionality.

To evaluate MigratePro’s enhanced results, we further compare
the enhanced results by MigratePro with two recent migration
approaches (i.e., TRASM [32] and Adaptdroid [37]).

MigratePro can also be viewed as a GUI test repair approach that
repairs the migrated test cases generated by migration approaches
to successfully test the target functionalities. Among existing repair
approaches [18, 27, 40, 49], only GUIDER [49] provides a binary
file, while the others [18, 27, 40] remain closed source without
even binary versions. Unfortunately, the binary file of GUIDER is
not executable. Despite reaching out to the authors of GUIDER for
assistance, we are informed that the source code has been lost. Thus,
we are not able to compare these approaches with MigratePro.

Evaluation process. To evaluate the effectiveness of MigratePro
and the migration approaches, we classify the generated test cases
into three types (i.e., Typesuc−1, Typesuc−2, and Typeunsuc) based
on whether they successfully test the target functionalities. These
types are consistent with those outlined in Section 2.1.

Compared with the evaluation process described in Section 2.1,
this evaluation process includes two additional steps. First, before
initiating the evaluation, we randomize the generated test cases
from MigratePro and migration approaches. This step ensures no
undue bias in favor of MigratePro. Second, after all test cases have
been classified into Typesuc−1, Typesuc−2, and Typeunsuc, we han-
dle Typeunsuc test cases differently. In practice, users often have to
manually modify test cases to align them with the target functional-
ities. The number of modification steps measures the effectiveness
of Typeunsuc test cases. We engage the same three volunteers who
have participated in the evaluation process to manually modify
the generated test cases. If there is any disagreement among the
volunteers, they discuss the issue until reaching a consensus.

Evaluation metrics. The aim of migration approaches is to
generate test cases that successfully test the target functionalities.
To evaluate the effectiveness of MigratePro and the compared mi-
gration approaches, we design three metrics: availability, coverage,
and reduction.

Availability. This metric is calculated as the ratio of generated
test cases (𝑇𝑒𝑠𝑡𝑠𝑢𝑐) that successfully test the target functionalities
to the total number of generated test cases (𝑇𝑒𝑠𝑡𝑡). This metric mea-
sures to what extent the generated test cases are able to accurately
accomplish the tasks they are designed for.

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑇𝑒𝑠𝑡𝑠𝑢𝑐 /𝑇𝑒𝑠𝑡𝑡 (1)

Coverage. This metric is calculated as the ratio of functionalities
(𝐹𝑢𝑛𝑐𝑠𝑢𝑐) successfully tested by the generated test cases to the total
number of target functionalities (𝐹𝑢𝑛𝑐𝑡). This metric measures how
many functionalities can be covered by the generated test cases.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝐹𝑢𝑛𝑐𝑠𝑢𝑐 / 𝐹𝑢𝑛𝑐𝑡 (2)

Reduction. This metric is calculated as the ratio of steps saved
by employing the generated test case compared to writing a new
test case from scratch. We follow the methodology in the FrUITeR
study [54]. Specifically, based on the Levenshein distance [26], we
first compute the number of steps (𝑆𝑡𝑒𝑝𝑚) needed to modify a gen-
erated test case to test the target functionality. In this context, a

874

Synthesis-Based Enhancement for GUI Test Case Migration ISSTA ’24, September 16–20, 2024, Vienna, Austria

step in the Levenshtein distance refers to an insertion, a modifica-
tion, and a deletion of an event or an assertion. We then compute
the number of steps (𝑆𝑡𝑒𝑝𝑡) required to write the test case to suc-
cessfully test the target functionalities from scratch. This metric
measures the potential effectiveness of Typeunsuc test cases.

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = (𝑆𝑡𝑒𝑝𝑡 − 𝑆𝑡𝑒𝑝𝑚) / 𝑆𝑡𝑒𝑝𝑡 (3)

Among the preceding metrics, availability and reduction are
test-case-level metrics, providing individual scores for each test
case. These metrics are robust to evaluate the effectiveness of both
MigratePro and the selected migration approaches.

However, coverage is a functionality-level metric. For a migration
approach that typically generates multiple test cases for one func-
tionality, if one of these test cases successfully tests the functionality,
this functionality is considered covered. In contrast, MigratePro
generates a single test case per functionality. Thus, the functionality
coverage in MigratePro is solely dependent on this single test case.
This makes the coverage metric potentially more favorable to the
compared migration approaches but more stringent to MigratePro.

Implementation and parameter selection. We implement
MigratePro in Python to support Android [3] apps. We use UIAu-
tomator [11] and adb [2] tools to dump GUI states. The experiments
are based on a Pixel 3 Emulator running Android 6.0. Some apps
require installation in this setup, but MigratePro can adapt to others.

MigratePro needs to set three parameters (i.e., 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,
𝑟𝑒𝑝𝑒𝑎𝑡_𝑛𝑢𝑚, and𝑚𝑎𝑥_𝑡𝑖𝑚𝑒). We randomly select 10% of the total
apps in the Lin dataset as a validation set for parameter selection.
Following ATM [14] and Craftdroid [30], we set the candidate pa-
rameters for 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑟𝑒𝑝𝑒𝑎𝑡_𝑛𝑢𝑚, and𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 to
{0.2, 0.5, 0.8}, {1, 2, 3}, and {3, 5, 7}, respectively. After experiments
on the validation set, we observe that setting 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
to 0.5, 𝑟𝑒𝑝𝑒𝑎𝑡_𝑛𝑢𝑚 to 3, and𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 to 5 minutes yields the best
effectiveness. Thus, all the experiments utilize this setting.

4.2 RQ1: Overall Effectiveness and Efficiency
To assess the effectiveness and the efficiency of MigratePro in en-
hancing test case migration, we conduct evaluations across dif-
ferent apps and migration approaches. Specifically, we evaluate
MigratePro to enhance Craftdroid [30] on the Lin dataset, and to
enhance AppFlow [22] and ATM [14] on the FrUITeR dataset.

Note that, we do not evaluate the migration approaches on a
combined dataset for two reasons. First, the Lin dataset includes
both events with complex actions (e.g., swipe-right) and assertions.
However, the FrUITeR dataset includes only events with simple
actions (e.g., click) without assertions. Second, AppFlow cannot
migrate assertions, and ATM cannot migrate complex actions and
assertions in the Lin dataset.

Enhancement results. Table 3 shows the test results that use
MigratePro to enhance Craftdroid (i.e., the column denoted as Cra.
→ Cra.+Mig.), to enhance AppFlow (i.e., the column denoted as
App.→ App.+Mig.), and to enhance ATM (i.e., the column denoted
as ATM→ ATM+Mig.).

Craftdroid enhanced by MigratePro, achieves an 80% availability
rate, implying that 80% of the new test cases (including both the
Typesuc−1 and Typesuc−2 cases) successfully test the target func-
tionalities. This rate is identical to its functional coverage, which
means that the new test cases synthesized by MigratePro cover 80%

Table 3: Evaluation of MigratePro.

Dataset Lin Dataset FrUITeR Dataset

Approach Cra.→ Cra.+Mig. App. → App.+Mig. ATM→ ATM+Mig.

𝑇𝑦𝑝𝑒𝑠𝑢𝑐−1 29%→ 37% (↗ 28%) 6%→ 19% (↗ 217%) 2%→ 4% (↗ 100%)
𝑇𝑦𝑝𝑒𝑠𝑢𝑐−2 14%→ 43% (↗ 207%) 0% → 7% (↗∞) 2% → 12% (↗ 500%)
𝑇𝑦𝑝𝑒𝑢𝑛𝑠𝑢𝑐 57%→ 20% (↘ 65%) 94% → 74% (↘ 21%) 96% → 84% (↘ 13%)

Availability 43%→ 80% (↗ 86%) 6%→ 26% (↗ 333%) 4% → 16% (↗ 300%)
Coverage 63%→ 80% (↗ 27%) 15% → 26% (↗ 73%) 10% → 16% (↗ 60%)
Reduction 53% → 52% (↘ 2%) 18% → 27% (↗ 50%) 4%→ 9% (↗ 125%)

of the total functionalities. Compared to the original Craftdroid,
using MigratePro shows a substantial improvement of 86% in avail-
ability and 27% in coverage. Furthermore, 37% (Typesuc−1) of the
new test cases synthesized by MigratePro align with the ground-
truth test cases. In addition, the remaining 20% (Typeunsuc) of the
new test cases that do not completely test the target functionalities
are also beneficial for users. Compared to crafting the target test
cases from scratch, utilizing the Typeunsuc test cases synthesized
by MigratePro can potentially save 52% of human effort.

AppFlow and ATM, after enhancement with MigratePro, show
substantial availability improvement of 333% and 300%, respectively.
Additionally, their coverage improves by 73% and 60%, respectively.

Note that, MigratePro only synthesizes one test case for each
functionality, so the availability score is equal to its coverage score.
In contrast, existing migration approaches obtain multiple test
cases for a single functionality of a target app based on multiple
source apps. For example, among the 10 different functionalities
for 23 apps in the Lin dataset (see Table 2), Craftdroid generates
168 migrated test cases (see Table 1). Thus, Craftdroid’s availability
is different from its coverage. Additionally, the average agreement
score for volunteers to modify the Typeunsuc test cases is 91% in
this experiment, as calculated using Krippendorff’s alpha [43].

Result analysis.Availability improvement. Availability is a piv-
otal metric for measuring the effectiveness of migration approaches.
A high availability implies that the migration approaches can suc-
cessfully generate a greater number of test cases to test the target
functionalities. This minimizes the need for human intervention in
modifying or crafting new test cases. Conversely, a low availability
implies that fewer generated test cases are capable of successfully
testing the target functionalities, demanding increased human inter-
vention. Notably, MigratePro considerably improves the availability
scores for Craftdroid, AppFlow, and ATM by 86%, 333%, and 300%,
respectively. Such notable enhancements indicate that test cases
synthesized through MigratePro are more complete and require
less human intervention.

Coverage improvement. Based on the analysis of “evaluation
metrics” in Section 4.1, the coverage metric presents a more strin-
gent requirement toMigratePro. However, MigratePro still manages
to enhance the coverage rate by 27%, 73%, and 60% compared to
the original Craftdroid, AppFlow, and ATM, respectively.

Efficiency study.We calculate the runtime information of Mi-
gratePro. The average running time for MigratePro per test case is
13 minutes on the FrUITeR dataset and 8 minutes on the Lin dataset.
Note that, the migration approach Craftdroid [30] reportedly takes
about 89 minutes per test case. Therefore, the time overhead for

875

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yakun Zhang, Qihao Zhu, Jiwei Yan, Chen Liu, Wenjie Zhang, Yifan Zhao, Dan Hao, and Lu Zhang

Table 4: Evaluation of MigratePro by category.

Dataset
Category

Cra./App.→ Cra./App.+Mig.

(Approach) Ava. Cov.

Lin
Browser 83% → 100% (↗ 20%) 100%→ 100% (→ 0%)
To-Do 25% → 80% (↗ 220%) 40% → 80% (↗ 100%)

(Cra.)
Shopping 0% → 25% (↗∞) 0%→ 25% (↗∞)
Mail 63% → 88% (↗ 40%) 88% → 88% (→ 0%)
Calculator 38% → 100% (↗ 163%) 80% → 100% (↗ 25%)

FrUITeR News 7% → 26% (↗ 271%) 17% → 26% (↗ 53%)
(App.) Shopping 6% → 26% (↗ 333%) 13% → 26% (↗ 100%)

enhancing test cases with MigratePro is not significantly prominent
compared to the original test case migration.
Answer to RQ1: MigratePro’s ability to effectively enhance
test cases across various migration approaches, combined with
its acceptable efficiency, makes it a valuable approach.

4.3 RQ2: Effectiveness by Category
To investigate the enhancement ofMigratePro across app categories,
we conduct a statistical analysis of its effectiveness in enhancing
Craftdroid, AppFlow, and ATM for different app categories.

Enhancement results by category. Table 4 presents the avail-
ability (denoted as “Ava.”) and coverage (denoted as “Cov.”) of the
test cases enhanced by MigratePro (denoted as “Mig.”) for Craft-
droid (denoted as “Cra.”) or AppFlow (denoted as “App.”) by app
category. The initial five rows denote Craftdroid’s related results,
while the last two rows denote AppFlow’s related results. Note
that, the results of ATM and enhanced by MigratePro share similar
patterns with those of AppFlow. Due to space limit, we make these
results related to ATM available in our repository [9].

The results of Table 4 reveal two observations. First, employing
MigratePro to enhance Craftdroid and AppFlow notably improves
both availability and coverage across various app categories. Second,
the availability and coverage of MigratePro vary across different
app categories. These variations may be related to the quality of the
test cases migrated by the migration approaches and the complexity
of the app categories.

Result analysis. Each row of Table 4 presents the effectiveness
of a selected migration approach and the enhancements by Mi-
gratePro under a specific app category. We classify the variations
across categories for MigratePro into three groups.

• First, the migration approach often generates test cases that
can successfully test the target functionality.

• Second, the migration approach often fails to generate test
cases that successfully test the target functionalities, although
the target app design is not complex.

• Third, themigration approach often fails to generate effective
test cases, and the design of the target apps is complex.

Group analysis. The first group includes the Browser category
and the Mail category. Since the selected migration approaches
already generate a large number of effective test cases, there is little
room for MigratePro to further enhance these test cases. The second
group includes the Calculator category and the To-do category.
For example, a typical calculator app has a main state with a few

Table 5: Contribution of each stage in MigratePro.

Approach Cra.+Mig. App.+Mig.

Metric Ava. Cov. Ava. Cov.

Full stages 80% 80% 26% 26%
w/o test case generation (w/o first stage) 59% 72% 14% 22%
w/o test case adjustment (w/o second stage) 57% 57% 21% 21%

actionable widgets to fill in the number and select the operation.
Such a less complex app design facilitates test case enhancement
as there are few states to explore and few widgets to incorporate.
In these scenarios, MigratePro can significantly improve the test
cases generated by these migration approaches. The third group
includes the Shopping category and the News category. These apps
typically include multiple states and widgets. The functionalities in
such apps involve a series of events, each interacting with different
widgets across various states. For instance, the sign-in functionality
in a shopping app typically involves transitions from the initial
state to the sign-in state, filling in all the required information, and
finally, confirming the successful completion the sign-in process.
Such complexity in app design increases the difficulty in migrating
test cases and further enhancing these migrated test cases.

Dataset analysis. We observe that both original AppFlow and
AppFlow enhanced by MigratePro do not perform as well on the
FrUITeR dataset as original Craftdroid and Craftdroid enhanced
by MigratePro do on the Lin dataset. This discrepancy arises from
the fact that the Shopping category and the News category in the
FrUITeR dataset are of higher complexity than the Browser category
and the Calculator category in the Lin dataset. This complexity,
which includes multiple GUI states with various widgets in each
state, presents notable challenges for both test case migration and
enhancement. Furthermore, the test cases migrated by AppFlow
contain fewer should-be-included events and assertions but more
should-be-removed events and assertions, which further compli-
cates the enhancement of themigrated test cases. Nevertheless, even
in these challenging scenarios, MigratePro has managed to signif-
icantly enhance the migrated test cases obtained with AppFlow.
For original AppFlow (see Table 4), only 6% of shopping test cases
and 7% of news test cases are able to test the target functionalities,
but after enhancement by MigratePro, 26% of the synthesized test
cases could successfully test the target functionalities without any
manual modifications.
Answer to RQ2: MigratePro has good generalizability across
different app categories and is particularly effective in situations
where migration approaches struggle to generate test cases that
successfully test the target functionalities, although the target
app design is not complex.

4.4 RQ3: Ablation Study
We evaluate the contributions of MigratePro’s two stages using
migrated test cases generated from Craftdroid and AppFlow.

Experimental setting.We design two ablation studies. First, to
evaluate the effectiveness of the generation techniques, we remove
the first stage from MigratePro. Without this stage, MigratePro
cannot combine migrated test cases and generate a base test case

876

Synthesis-Based Enhancement for GUI Test Case Migration ISSTA ’24, September 16–20, 2024, Vienna, Austria

for the second stage. Instead, we use each migrated test case directly
as input for the second stage. Second, to evaluate the effectiveness
of the adjustment techniques, we remove the second stage from
MigratePro. Without this stage, MigratePro cannot adjust the base
test cases generated in the first stage. Thus, the base test cases are
treated as the final test cases.

Results for ablation study. Table 5 presents the availability
(denoted as “Ava.”) and coverage (denoted as “Cov.”) of the ablation
study. The first row displays the effectiveness of MigratePro. The
subsequent rows illustrate the effectiveness of MigratePro’s abla-
tion stages. It indicates that the removal of any stage results in a
substantial decrease for MigratePro to enhance test cases. For in-
stance, regarding the test cases migrated from Craftdroid, removing
the first stage and the second stage leads to a decrease in availability
metrics from 80% to 59% and 57%, respectively.

While this experiment helps analyze the factors for MigratePro’s
effectiveness in enhancing test case migration, there is room for
further analysis. One potential direction is to compare the impact
of using state graphs constructed through the state graph construc-
tion phase with those constructed during the related state collection
phase on the overall effectiveness of MigratePro. Another potential
direction is to analyze the factors that influence MigratePro’s col-
lection of execution-based and exploration-based states during the
related state collection phase.
Answer to RQ3: MigratePro’s two stages significantly con-
tribute to enhancing migrated test cases.

4.5 RQ4: Comparison with Related Approaches
To evaluate MigratePro’s enhanced results, we compare Craftdroid
enhanced by MigratePro with two recent migration approaches,
i.e., TRASM [32] and Adaptdroid [37], on the Lin dataset.

Experimental setting. TRASM [32] only publishes the migra-
tion results within three categories (i.e., Browser, To-Do, and Shop-
ping) on the Lin dataset. By following the evaluation process out-
lined in Section 4.1, we obtain the results of TRASM in testing the
target functionalities for the three categories.

Adaptdroid [37] has published the source code but does not eval-
uate on the Lin dataset. We execute Adaptdroid to get its migrated
test cases on the Lin dataset. To ensure the correct execution, we
engage in multiple rounds of communication with the authors of
Adaptdroid. Furthermore, we follow the evaluation process outlined
in Section 4.1 to assess Adaptdroid. Note that, Adaptdroid has some
limitations in supporting events and assertions. Specifically, it can-
not support some complex events in test cases (e.g., “swipe_right”
to a widget and “long_press” to a widget). It also cannot support the
assertions at the top or in the middle of test cases. Consequently, we
filter out test cases from the Lin dataset that Adaptdroid does not
support, resulting in the removal of all test cases from the Shopping
and Mail categories with only 13 test cases retained.

Result analysis. Table 6 presents the availability (i.e., “Ava.”)
and coverage (i.e., “Cov.”) of TRASM, Adaptdroid, and Craftdroid
enhanced by MigratePro (i.e., “Cra.+Mig.”) on the Lin dataset. The
results show that Craftdroid enhanced by MigratePro demonstrates
greater effectiveness, outperforming TRASM and Adaptdroid with a
45% higher availability and 31% higher coverage. However, without
enhancement by MigratePro, Craftdroid’s migration effectiveness

Table 6: Comparison with TRASM and Adaptdroid.

Approach TRASM Adaptdroid Cra.+Mig.

Metric Ava. Cov. Ava. Cov. Ava. Cov.

Browser 80% 80% 33% 67% 100% 100%
To-Do 58% 70% 50% 75% 80% 80%
Shopping 9% 25% - - 25% 25%
Mail - - - - 88% 88%
Tip - - 17% 33% 100% 100%

Average 55% 61% 33% 54% 80% 80%

(see Table 4) in the To-Do and Shopping category is inferior to
TRASM. This further highlights MigratePro’s capability and the
necessity of enhancement for migrated test cases.

Note that, TRASM and Adaptdroid are less effective compared
to Craftdroid enhanced by MigratePro because they target different
goals. UnlikeMigratePro, which aims to enhancemigrated test cases
to successfully test target functionalities, TRASM and Adaptdroid
aim to improve the accuracy of event/assertion migration.
Answer to RQ4: The enhanced results by MigratePro demon-
strate strong effectiveness in generating GUI test cases for tar-
get functionalities when compared to the related approaches.

4.6 Threats to Validity
A possible threat to external validity is the generalizability to other
mobile apps and migration approaches. To mitigate this threat, we
use the most app categories and functionalities compared with
related work. Moreover, we also evaluate MigratePro using three
distinct migration approaches [14, 22, 30]. Using the same datasets
for both the preliminary study and the evaluation may somewhat
impact MigratePro’s generalizability negatively. However, in the
preliminary study, we only conduct high-level statistical analysis to
identify the migration problems. To further evaluate MigratePro’s
generalizability, we perform an additional study using five new
apps (see Section 5).

A possible threat to internal validity is the possible mistakes
involved in our implementation and experiments. To mitigate this
threat, we manually inspect our results and analyze the test cases
that fail to test the target functionalities. We also publish our imple-
mentation and experimental data and welcome external validation.
As for the human evaluation, we invite three experienced develop-
ers and provide them with a clear evaluation process.

A possible threat to construct validity is about evaluation metrics.
To mitigate this threat, we carefully design three metrics aiming
at validating the effectiveness of test cases. These metrics offer a
reliable and objective basis for evaluating test cases generated by
migration approaches and those enhanced by MigratePro.

5 Generalizability Study
To further evaluate the generalizability of MigratePro, we conduct
a study to evaluate MigratePro in enhancing test case migration
using five new target apps in Google Play Store [8]. In this study, we
select Craftdroid [30] as the migration approach since it can migrate
both events and assertions. Note that, the inputs of MigratePro are

877

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yakun Zhang, Qihao Zhu, Jiwei Yan, Chen Liu, Wenjie Zhang, Yifan Zhao, Dan Hao, and Lu Zhang

Table 7: Evaluation of MigratePro on New Apps.

App
Cra. → Cra.+Mig.

Ava. Cov. Red.

Web Browser 25% → 50% (↗ 100%) 50% → 50% (→ 0%) 58%→ 14% (↘ 76%)
Done 20% → 50% (↗ 150%) 50% → 50% (→ 0%) 61%→ 75% (↗ 23%)
Ubuy 0% → 50% (↗ ∞) 0%→ 50% (↗ ∞) 45%→ 38% (↘ 16%)
Pro Mail 25% → 100% (↗ 300%) 50% → 100% (↗ 100%) 38%→ 100% (↗ 163%)
Tip Calculator 0% → 50% (↗ ∞) 0%→ 50% (↗ ∞) 80%→ 75% (↘ 6%)

Average 14% → 60% (↗ 329%) 30%→ 60% (↗ 100%) 58%→ 51% (↘ 12%)

the target app and its migrated test cases for a target app. We use
the migrated test cases generated by Craftdroid on five new target
apps as the inputs of MigratePro.

Experimental objects. To migrate test cases of apps from the
Lin dataset to apps in Google Play Store [8], we use three steps
to identify the target apps that belong to the same categories as
those in the Lin dataset. First, for each app in the Lin dataset, we
search for the top ten similar apps in Google Play Store. Second, we
select the target app for each category with the highest number of
appearances in the app search. In case multiple apps have the same
appearances, we select the target app with the highest number of
downloads. Using this app selection strategy, we obtain five target
apps, each corresponding to one category.

Evaluation process. To evaluate the effectiveness of MigratePro
and Craftdroid, we follow a similar evaluation process outlined in
Section 4.1 and invite the same three volunteers. Note that, since
the five new apps do not have ground-truth test cases, we cannot
provide the volunteers with the ground-truth target test cases. Nev-
ertheless, we provide the volunteers with the ground-truth source
test cases for the same functionality, which can still help volun-
teers understand the target functionality. The evaluation metrics
are availability, coverage, and reduction.

Result analysis. Table 7 presents the availability (denoted as
“Ava.”), coverage (denoted as “Cov.”), and reduction (denoted as
“Red.”) of the test cases migrated by Craftdroid (denoted as “Cra.”)
and enhanced by MigratePro (denoted as “Mig.”) on five new apps.

Craftdroid, enhanced byMigratePro, achieves an 60% in availabil-
ity and 60% in coverage. Compared to the original Craftdroid, using
MigratePro shows a substantial improvement of 329% in availability
and 100% in coverage. For the new test cases that do not completely
test the target functionalities, MigratePro potentially saves 51% of
human effort. Furthermore, the app categories for these new target
apps are different. From Table 7 we observe that MigratePro demon-
strates significant improvement for different categories of apps.
Overall, this study demonstrates the satisfactory generalizability of
MigratePro in new apps.

6 Discussion
Assertion analysis. Assertions are crucial in functional test cases.
We further analyze MigratePro’s effectiveness to enhance assertion
generation. 80% of the test cases generated by MigratePro based
on the migrated test cases from Craftdroid contain fully effective
assertions (see Table 3). We also analyze the overall precision and
recall of assertions in test cases generated by MigratePro and Craft-
droid, comparing them with the corresponding ground-truth test
cases. MigratePro demonstrates an improvement in precision of

2% (87% vs. 89%) and recall of 13% (78% vs. 88%) compared with
the original Craftdroid. This analysis demonstrates that MigratePro
can effectively enhance assertion generation.

There are two reasons for MigratePro to effectively enhance
assertion generation. First, test case migration facilitates the gen-
eration of relevant assertions for the target app. In GUI testing,
each assertion corresponds to a widget and a condition. Test case
migration from source to target apps enables the migration of target
widgets for assertions, while conditions for assertions, typically
consistent across similar functionalities, can be reused. Second, the
techniques used in MigratePro’s test case adjustment stage facil-
itate to adjust these assertions. MigratePro leverages frequency
and execution information to identify and remove assertions that
may be irrelevant or obstructive. In addition, the incorporation of
connection events further helps those identified effective assertions
to play the role in the generated test cases.

Effectiveness of related state collection. To further analyze
the effectiveness of MigratePro’s related state collection approach
for the target functionalities, we check MigratePro’s collected states
based on the migrated test cases generated by Craftdroid, ATM,
and AppFlow. Our analysis focuses on two metrics: the activity
coverage for each functionality, and the success rate in collecting
all related states for the target functionalities using MigratePro.

We have three observations through the analysis. First, explo-
ration of each functionality within an app typically requires travers-
ing a relatively small space. The average exploration for each func-
tionality only requires exploring 3% of the total activities4 for a
target app. Second, executing the longest executable subsequence is
effective in collecting related states, which enables collecting all the
related states for 63% of the total number of target functionalities.
Third, a combined approach of executing the longest executable
subsequence and random exploration further enhances the state
collection. This combined approach enables collecting all the re-
lated states for 94% of the total number of target functionalities.
These results underscore the effectiveness of MigratePro’s state
collection approach.

Identifying and mapping functionalities. When the source
and target apps belong to the same category, it is not hard to iden-
tify and map functionalities of the test cases. First, when writing
functional test cases, developers typically specify the correspond-
ing functionalities within the function names (e.g., testSignIn) to
enhance the readability. Second, apps belonging to the same cate-
gory often share similar functionalities. In fact, existing migration
approaches [14, 22, 30, 32, 37] are developed under this scenario.

However, there may be some challenges when apps belong to
different categories. Specifically, it is challenging to identify the
functionalities of test cases when function names have ambiguous
semantics; to map test cases that have different expressions but
test the same functionalities; and to map apps that share the same
functionalities but belong to different app categories.

Some potential solutions may address these challenges. Two
potential solutions that may aid functionality mapping are using
broader sources (e.g., function names, code comments, and widget
information) of a test case and employing advanced matching mod-
els [5, 15, 33]. Additionally, another potential solution that may aid

4An activity is a collection of states for the same purpose designed by the developers.

878

Synthesis-Based Enhancement for GUI Test Case Migration ISSTA ’24, September 16–20, 2024, Vienna, Austria

app mapping is analyzing the functionalities of apps included in
the app introductions from Google Play store [8].

The number of migrated test cases on MigratePro. We con-
duct a statistical analysis to evaluate the influence of the number
of migrated test cases that generated by Craftdroid, ATM, and
AppFlow on MigratePro. While MigratePro inputs all migrated test
cases generated by a migration approach, its effectiveness is influ-
enced by the number of migrated test cases. The results show that
as the number of migrated test cases per functionality increases, the
effectiveness of MigratePro gradually improves. This also demon-
strates the rationality of MigratePro’s intuition in combining multi-
ple migrated test cases. Due to space limit, we make the detailed
results available in our repository [9].

Integrating MigratePro with migration approaches. The
inputs of MigratePro are multiple migrated test cases for the target
app. We require the migration approaches to migrate multiple test
cases simultaneously. Leveraging intermediate information during
the migration process may enhance the efficiency of MigratePro.
For instance, Craftdroid obtains the states corresponding to each
migrated widget during the migration process. By modifying the
Craftdroid code, we may effectively obtain the executable subse-
quence of each migrated test case. After the migration process, we
may identify the longest executable subsequence by comparing
the executable subsequences of the migrated test cases. Therefore,
we can directly select the states corresponding to this sequence
without re-executing the migrated test cases.

7 Related Work
GUI Test case migration. There are three approaches [41, 46, 52]
aiming to migrate test cases across different platforms within the
same apps. Testmig [41] employs static analysis to guide event ex-
ploration and map similar events from iOS to Android. MAPIT [46]
executes bi-directional test migration between Android and iOS
using dynamic analysis. LIRAT [52] employs computer vision tech-
niques to map similar events across Android and iOS.

There are six approaches [14, 22, 30, 32, 37, 53] focusing on mi-
grating test cases across different apps. AppFlow [22] utilizes a
trained multi-classifier to identify widget labels (e.g., registration
widget) of both source widgets (i.e., the widgets in the source app)
and target widgets (i.e., the widgets in the target app). If a source
widget and a target widget share the same label, AppFlow considers
them as matched widgets. ATM [14] leverages word embeddings
from word2vec [38] fine-tuned with app manuals to represent wid-
gets. It further manually defines a matching function to match
widgets. In contrast to ATM, Craftdroid [30] and TRASM [32] use
word embeddings from a standard word2vec [38]. Adaptdroid [37]
uses word embeddings from Word Mover’s Distance [24]. TEM-
droid [53] trains a learning-based matching model to match widgets.
After identifying matched widgets, these migration approaches gen-
erate events and assertions based on the matched widgets, and then
form migrated test cases.

There are two key differences between existing migration ap-
proaches and MigratePro. First, they are oriented to different prob-
lems. Although both approaches have the broad goal of enabling
test case migration, existing migration approaches focus on map-
ping from source test case to target test case, whereas MigratePro

aims to enhance the migrated test cases that cannot successfully
test the target functionalities. Second, the core ideas of these ap-
proaches are different. Existing migration approaches generate a
test case based on a single source test case. In contrast, MigratePro
synthesizes a new test case from multiple migrated test cases.

GUI test case repair. Existing repair approaches [18, 27, 40, 49]
aim to repair the outdated test cases between different versions of
the same apps. Atom [27] and CHATEM [18] utilize the accurate
behavior model to replace outdated events. In contrast, METER [40]
and Yoon et al. [51] leverage computer vision techniques to detect
deviations of events from the different app versions, and construct
repairs to reduce the deviations. GUIDER [49] is a modified version
of METER with structural information.

MigratePro can also be viewed as a repair approach that repairs
the migrated test cases to successfully test the target function-
alities. However, there are two key differences between existing
repair approaches and MigratePro. First, the purpose of existing
repair approaches is to make the repaired tests executable, whereas
the purpose of MigratePro is not only to make the repaired tests
executable, but also to successfully test the target functionalities.
Second, existing repair approaches repair a target test case based
on a single test case. In contrast, MigratePro synthesizes a new test
case based on all the migrated test cases for the same functionality.

GUI test case generation. GUI test case generation is to detect
bugs [48]. According to exploration strategies, these approaches
can be classified into four categories, i.e., random approaches [10,
34], model-based approaches [13, 21, 25, 28, 45], systematic ap-
proaches [12, 20, 35], and learning approaches [16, 23, 29, 44]. Mi-
gratePro can also be viewed as a GUI test case generation approach
that leverages the generated test cases to test a target app. While
these approaches are proficient in generating events, they often
struggle to generate oracle information. In contrast, MigratePro
can automatically generate both events and assertions in case the
migrated test cases contain them.

8 Conclusion
In this paper, we have proposed MigratePro, the first approach
designed to synthesize new test cases to successfully test the target
functionalities based on the migrated test cases. We have eval-
uated the effectiveness of MigratePro on 30 real-world apps, 34
functionalities, 127 test cases, and three representative migration
approaches. Our experimental results demonstrate the effectiveness
of MigratePro in enhancing test case migration.

9 Data Availability
The artifact of MigratePro is in a repository [9].

Acknowledgements
We thank the anonymous ISSTA reviewers for their valuable feed-
back and the insightful comments provided by Zhiyong Zhou on the
preliminary study. Lu Zhang was partially supported by National
Natural Science Foundation of China under Grant No.62232003.
Dan Hao was partially supported by National Natural Science Foun-
dation of China under Grant No.62372005. Jiwei Yan was partially
supported by National Natural Science Foundation of China under
Grant No.62102405 and Grant No.62132020.

879

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yakun Zhang, Qihao Zhu, Jiwei Yan, Chen Liu, Wenjie Zhang, Yifan Zhao, Dan Hao, and Lu Zhang

References
[1] 2024. Adaptdroid dataset. Retrieved July 1, 2024 from https://drive.google.com/

drive/folders/1NVxoYQZRa5ZFwbnq2QJ4_xGJ-VZci_oX/
[2] 2024. Android debug bridge (adb). Retrieved July 1, 2024 from https://developer.

android.com/tools/adb
[3] 2024. Android official developing documents. Retrieved July 1, 2024 from https:

//developer.android.com/docs
[4] 2024. ATM dataset. Retrieved July 1, 2024 from https://sites.google.com/view/

apptestmigrator/
[5] 2024. ChatGPT- A large language model for OpenAI. Retrieved July 1, 2024 from

https://chat.openai.com/auth/login
[6] 2024. Craftdroid dataset: a dataset to evaluate the effectiveness of test case migration

tools within categories. Retrieved July 1, 2024 from https://github.com/seal-
hub/CraftDroid

[7] 2024. Fruiter dataset: a dataset to evaluate the effectiveness of test case migration
tools within categories. Retrieved July 1, 2024 from https://felicitia.github.io/
FrUITeR/

[8] 2024. Google Play store. Retrieved July 1, 2024 from https://play.google.com/
store/games

[9] 2024. Source code and extra materials for MigratePro. Retrieved July 1, 2024 from
https://github.com/YakZhang/MigratePro

[10] 2024. UI/Application Exerciser Monkey. Retrieved July 1, 2024 from https://
developer.android.com/studio/test/monkey

[11] 2024. UIAutomator API. Retrieved July 1, 2024 from https://developer.android.
com/training/testing/ui-automator

[12] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. 1–11.
https://doi.org/10.1145/2393596.2393666

[13] Young-Min Baek and Doo-Hwan Bae. 2016. Automated model-based android
gui testing using multi-level gui comparison criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering. 238–249.
https://doi.org/10.1145/2970276.2970313

[14] Farnaz Behrang and Alessandro Orso. 2019. Test migration between mobile apps
with similar functionality. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 54–65. https://doi.org/10.1109/ASE.2019.
00016

[15] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS
Torr. 2016. Fully-convolutional siamese networks for object tracking. In European
conference on computer vision. Springer, 850–865. https://doi.org/10.1007/978-3-
319-48881-3_56

[16] Nataniel P Borges Jr, Maria Gómez, and Andreas Zeller. 2018. Guiding app testing
with mined interaction models. In Proceedings of the 5th International Conference
on Mobile Software Engineering and Systems. 133–143. https://doi.org/10.1145/
3197231.3197243

[17] Tianqin Cai, Zhao Zhang, and Ping Yang. 2020. Fastbot: A Multi-Agent Model-
Based Test Generation System Beijing Bytedance Network Technology Co., Ltd..
In Proceedings of the IEEE/ACM 1st International Conference on Automation of
Software Test. 93–96. https://doi.org/10.1145/3387903.3389308

[18] Nana Chang, Linzhang Wang, Yu Pei, Subrota K Mondal, and Xuandong Li. 2018.
Change-based test script maintenance for android apps. In 2018 ieee international
conference on software quality, reliability and security (qrs). IEEE, 215–225. https:
//doi.org/10.1109/QRS.2018.00035

[19] Felix Dobslaw, Robert Feldt, David Michaëlsson, Patrik Haar, Francisco Gomes
de Oliveira Neto, and Richard Torkar. 2019. Estimating return on investment for
gui test automation frameworks. In 2019 IEEE 30th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 271–282. https://doi.org/10.1109/
ISSRE.2019.00035

[20] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android
testing via synthetic symbolic execution. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 419–429. https:
//doi.org/10.1145/3238147.3238225

[21] Tianxiao Gu, Chun Cao, Tianchi Liu, Chengnian Sun, Jing Deng, Xiaoxing Ma,
and Jian Lü. 2017. Aimdroid: Activity-insulated multi-level automated testing
for android applications. In 2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). IEEE, 103–114.

[22] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: using machine learning
to synthesize robust, reusable UI tests. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 269–282. https://doi.org/10.1145/3236024.
3236055

[23] Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tan-
riverdi, and Yunus Donmez. 2018. QBE: QLearning-based exploration of android
applications. In 2018 IEEE 11th International Conference on Software Testing, Veri-
fication and Validation (ICST). 105–115. https://doi.org/10.1109/ICST.2018.00020

[24] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. 2015. From word
embeddings to document distances. In International conference on machine learn-
ing. PMLR, 957–966.

[25] Duling Lai and Julia Rubin. 2019. Goal-driven exploration for android applica-
tions. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 115–127. https://doi.org/10.1109/ASE.2019.00021

[26] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. Soviet Union, 707–710.

[27] Xiao Li, Nana Chang, Yan Wang, Haohua Huang, Yu Pei, Linzhang Wang, and
Xuandong Li. 2017. ATOM: Automatic maintenance of GUI test scripts for
evolving mobile applications. In 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 161–171. https://doi.org/10.1109/
ICST.2017.22

[28] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a
lightweight ui-guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). IEEE, 23–
26. https://doi.org/10.1109/ICSE-C.2017.8

[29] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
deep learning-based approach to automated black-box android app testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1070–1073. https://doi.org/10.1109/ASE.2019.00104

[30] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test transfer across
mobile apps through semantic mapping. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 42–53. https://doi.
org/10.1109/ASE.2019.00015

[31] Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Kevin Moran, and Denys Poshy-
vanyk. 2017. How do developers test android applications?. In 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). IEEE, 613–622.
https://doi.org/10.1109/ICSME.2017.47

[32] Shuqi Liu, Yu Zhou, Tingting Han, and Taolue Chen. 2023. Test Reuse Based on
Adaptive Semantic Matching across Android Mobile Applications. arXiv preprint
arXiv:2301.00530 (2023). https://doi.org/10.1109/QRS57517.2022.00076

[33] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[34] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. 224–234. https://doi.org/10.1145/2491411.
2491450

[35] KeMao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated test-
ing for android applications. In Proceedings of the 25th International Symposium on
Software Testing and Analysis. 94–105. https://doi.org/10.1145/2931037.2931054

[36] Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni. 2021. Se-
mantic matching of GUI events for test reuse: are we there yet?. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
177–190. https://doi.org/10.1145/3460319.3464827

[37] Leonardo Mariani, Mauro Pezzè, Valerio Terragni, and Daniele Zuddas. 2023.
An evolutionary approach to adapt tests across mobile apps. In 2021 IEEE/ACM
International Conference on Automation of Software Test (AST). IEEE, 70–79. https:
//doi.org/10.1109/AST52587.2021.00016

[38] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[39] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement learning based curiosity-driven testing of android applications.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 153–164. https://doi.org/10.1145/3395363.3397354

[40] Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, and Xuandong Li. 2020.
GUI-guided test script repair for mobile apps. IEEE Transactions on Software
Engineering 48, 3 (2020), 910–929. https://doi.org/10.1109/TSE.2020.3007664

[41] Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. Testmig: Migrating gui test
cases from ios to android. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 284–295. https://doi.org/10.1145/
3293882.3330575

[42] Jeremy Reimer. 2005. A History of the GUI. Ars Technica 5 (2005), 1–17.
[43] Bizhan Shabankhani, J Yazdani Charati, Keihan Shabankhani, and S Kaviani

Cherati. 2020. Survey of agreement between raters for nominal data using
Krippendorff’s alpha. Arch Pharma Pract 10, S1 (2020), 160–164.

[44] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement learning for automatic test case prioritization and selection in continu-
ous integration. In Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 12–22. https://doi.org/10.1145/3092703.3092709

[45] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. 245–256. https://doi.org/10.1145/3106237.3106298

[46] Saghar Talebipour, Yixue Zhao, Luka Dojcilović, Chenggang Li, and Nenad Med-
vidović. 2021. UI test migration across mobile platforms. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 756–767.
https://doi.org/10.1109/ASE51524.2021.9678643

880

https://drive.google.com/drive/folders/1NVxoYQZRa5ZFwbnq2QJ4_xGJ-VZci_oX/
https://drive.google.com/drive/folders/1NVxoYQZRa5ZFwbnq2QJ4_xGJ-VZci_oX/
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://developer.android.com/docs
https://developer.android.com/docs
https://sites.google.com/view/ apptestmigrator/
https://sites.google.com/view/ apptestmigrator/
https://chat.openai.com/auth/login
https://github.com/seal-hub/CraftDroid
https://github.com/seal-hub/CraftDroid
https://felicitia.github.io/FrUITeR/
https://felicitia.github.io/FrUITeR/
https://play.google.com/store/games
https://play.google.com/store/games
https://github.com/YakZhang/MigratePro
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://doi.org/10.1145/2393596.2393666
https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1109/ASE.2019.00016
https://doi.org/10.1109/ASE.2019.00016
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1145/3197231.3197243
https://doi.org/10.1145/3197231.3197243
https://doi.org/10.1145/3387903.3389308
https://doi.org/10.1109/QRS.2018.00035
https://doi.org/10.1109/QRS.2018.00035
https://doi.org/10.1109/ISSRE.2019.00035
https://doi.org/10.1109/ISSRE.2019.00035
https://doi.org/10.1145/3238147.3238225
https://doi.org/10.1145/3238147.3238225
https://doi.org/10.1145/3236024.3236055
https://doi.org/10.1145/3236024.3236055
https://doi.org/10.1109/ICST.2018.00020
https://doi.org/10.1109/ASE.2019.00021
https://doi.org/10.1109/ICST.2017.22
https://doi.org/10.1109/ICST.2017.22
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ASE.2019.00104
https://doi.org/10.1109/ASE.2019.00015
https://doi.org/10.1109/ASE.2019.00015
https://doi.org/10.1109/ICSME.2017.47
https://doi.org/10.1109/QRS57517.2022.00076
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/3460319.3464827
https://doi.org/10.1109/AST52587.2021.00016
https://doi.org/10.1109/AST52587.2021.00016
https://doi.org/10.1145/3395363.3397354
https://doi.org/10.1109/TSE.2020.3007664
https://doi.org/10.1145/3293882.3330575
https://doi.org/10.1145/3293882.3330575
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1109/ASE51524.2021.9678643

Synthesis-Based Enhancement for GUI Test Case Migration ISSTA ’24, September 16–20, 2024, Vienna, Austria

[47] Najam us Saqib and Sara Shahzad. 2018. Functionality, performance, and com-
patibility testing: A model based approach. In 2018 International Conference on
Frontiers of Information Technology (FIT). IEEE, 170–175. https://doi.org/10.1109/
FIT.2018.00037

[48] Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang
Pu, Jifeng He, and Zhendong Su. 2023. An empirical study of functional bugs in
android apps. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis. 1319–1331. https://doi.org/10.1145/3597926.
3598138

[49] TongtongXu,Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Tian Zhang, YuetangDeng,
and Xuandong Li. 2021. Guider: Gui structure and vision co-guided test script
repair for android apps. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 191–203. https://doi.org/10.1145/
3597926.3598138

[50] Chee Kit Yee, Choo Seah Ling, Wong Seok Yee, and Wan Mohd Nazmee Wan
Zainon. 2012. GUI design based on cognitive psychology: Theoretical, empirical
and practical approaches. In 2012 8th International Conference on Computing
Technology and Information Management (NCM and ICNIT), Vol. 2. IEEE, 836–
841.

[51] Juyeon Yoon, Seungjoon Chung, Kihyuck Shin, Jinhan Kim, Shin Hong, and Shin
Yoo. 2022. Repairing Fragile GUI Test Cases Using Word and Layout Embedding.
In 2022 IEEE Conference on Software Testing, Verification and Validation (ICST).
IEEE, 291–301. https://doi.org/10.1109/ICST53961.2022.00038

[52] Shengcheng Yu, Chunrong Fang, Yexiao Yun, and Yang Feng. 2021. Layout
and image recognition driving cross-platform automated mobile testing. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
1561–1571. https://doi.org/10.1109/ASE.2019.00103

[53] Yakun Zhang, Wenjie Zhang, Dezhi Ran, Qihao Zhu, Chengfeng Dou, Dan Hao,
Tao Xie, and Lu Zhang. 2024. Learning-based Widget Matching for Migrating
GUI Test Cases. In Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering. 1–13. https://doi.org/10.1145/3597503.3623322

[54] Yixue Zhao, Justin Chen, Adriana Sejfia, Marcelo Schmitt Laser, Jie Zhang, Feder-
ica Sarro, Mark Harman, and Nenad Medvidovic. 2020. Fruiter: a framework for
evaluating ui test reuse. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1190–1201.

881

https://doi.org/10.1109/FIT.2018.00037
https://doi.org/10.1109/FIT.2018.00037
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1109/ICST53961.2022.00038
https://doi.org/10.1109/ASE.2019.00103
https://doi.org/10.1145/3597503.3623322

	Abstract
	1 Introduction
	2 Preliminary Study
	2.1 Experimental Setup
	2.2 Experimental Result

	3 MigratePro
	3.1 Running Example
	3.2 Approach Overview
	3.3 Test Case Generation
	3.4 Test Case Adjustment

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Overall Effectiveness and Efficiency
	4.3 RQ2: Effectiveness by Category
	4.4 RQ3: Ablation Study
	4.5 RQ4: Comparison with Related Approaches
	4.6 Threats to Validity

	5 Generalizability Study
	6 Discussion
	7 Related Work
	8 Conclusion
	9 Data Availability
	References

