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ABSTRACT
GUI test case migration is to migrate GUI test cases from a source
app to a target app. The key of test case migration is widget match-
ing. Recently, researchers have proposed various approaches by
formulating widget matching as a matching task. However, since
these matching approaches depend on static word embeddings with-
out using contextual information to represent widgets and man-
ually formulated matching functions, there are main limitations
of these matching approaches when handling complex matching
relations in apps. To address the limitations, we propose the first
learning-based widget matching approach named TEMdroid (TEst
Migration) for test case migration. Unlike the existing approaches,
TEMdroid uses BERT to capture contextual information and learns
a matching model to match widgets. Additionally, to balance the
significant imbalance between positive and negative samples in
apps, we design a two-stage training strategy where we first train
a hard-negative sample miner to mine hard-negative samples, and
further train a matching model using positive samples and mined
hard-negative samples. Our evaluation on 34 apps shows that TEM-
droid is effective in event matching (i.e., widget matching and target
event synthesis) and test case migration. For event matching, TEM-
droid’s Top1 accuracy is 76%, improving over 17% compared to
baselines. For test case migration, TEMdroid’s F1 score is 89%, also
7% improvement compared to the baseline approach.
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1 INTRODUCTION
GUI testing is common for testing the functionality of mobile
apps [16, 51, 78]. A GUI test case is composed of some ordered
test events and assertions [18, 46]. The events aim to explore the
functionalities of GUI widgets. The assertions aim to check whether
the outcomes of the events satisfy the expectations of develop-
ers. Manually constructing GUI test cases is tedious and time-
consuming [17, 26, 49, 65]. To reduce the cost of manually writing
GUI test cases, various approaches [18, 34, 46, 50, 58, 59] have been
proposed to migrate GUI test cases that share similar functional-
ities from a source app to a target app. We refer to the widgets
in the source app as the source widgets and the widgets in the
target app as the target widgets. The key to fulfill the migration
task is widget matching [43, 58] (i.e., mapping source widgets to
their corresponding target widgets). If an incorrect target widget
is mapped for a source widget, the migrated test case may fail to
execute or can explore only partial functionality. Thus, the results
of widget matching directly affect the migrated test cases.

There are two main categories, namely classification approaches
and matching approaches, of existing approaches for widget match-
ing. Classification approaches. Initially, researchers [34] for-
mulate widget matching as a classification task, i.e., identifying
widget labels and mapping source widgets to target widgets that
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have the same widget labels. The main limitation of this category
is that lower classification accuracy of widget labels can cause
lower matching accuracy of widgets.Matching approaches. To
address the limitation of the classification-based widget match-
ing, subsequent research [18, 46, 50, 59] formulates widget match-
ing as a matching task. A typical matching approach [46] uses
a manually defined matching function to calculate the matching
relation between a source widget and a target widget, where the
representations of widgets use word embeddings (e.g., those from
word2vec [62]) in natural language processing.

However, the existing matching approaches for widget match-
ing still suffer from two main limitations. First, these approaches
rely on static word embeddings (i.e., each word has one unique
representation). However, in test case migration, widget semantics
is typically represented by word sequences, and each word within
a sequence can be contextualized by the other words. Hence, the
existing matching approaches may fail to precisely capture the
semantics of individual words, as they cannot effectively lever-
age contextual information (i.e., the representation of each word
being contextualized by its surrounding words [12]). Second, the
existing matching approaches require manually defined matching
functions, which cannot handle complex matching relations. In a
manually defined matching function, the knowledge for building
the function comes from human analysis, insight, and experience.
Consequently, matching functions developed in this way can hardly
adapt to diverse matching relations in real-world apps.

To address the limitations of the existing matching approaches,
we propose TEMdroid (TEstMigration), a novel learning-based wid-
get matching approach for test case migration. TEMdroid is trained
with migration data for GUI test cases and uses BERT [19] to incor-
porate contextual information instead of static word embeddings.
By learning a matching model rather than relying on manually de-
fined matching functions, TEMdroid can handle complex matching
relations and adapt to diverse scenarios in real-world apps.

Specifically, we use migration data for GUI test cases to train
the matching model, and design three modules of this model: the
context-extraction, semantic-alignment, and widget-assessment
modules. First, in the context-extraction module, TEMdroid uses
BERT (a popular pre-trained language model with the self-attention
mechanism [79]) to incorporate contextual information. Further-
more, to better understand widget semantics, TEMdroid customizes
sentence embeddings, rather than using word embeddings [18, 46,
50, 58, 59]. The term “sentence embedding” represents semantics
of word sequences. When TEMdroid is trained, a word sequence
includes the textual information (e.g., the text on a widget) of a wid-
get, and the sentence embedding for the word sequence represents
not only the semantics of each word but also the contribution of
each word to the word sequence. Second, the semantic-alignment
module employs a Siamese network [24] to align the representa-
tions of two widgets into the same semantic space for fair compari-
son [27, 32, 54]. Third, the widget-assessment module measures the
similarity between two widgets using the cosine distance.

To address a challenge (i.e., imbalance between a few positive
samples and many negative samples1 for widget matching) faced

1Positive samples are should-be-matched widget pairs and negative samples are should-
not-be-matched widget pairs.

when training the matching model, we design a two-stage training
strategy that incorporates the idea of mining hard samples (i.e.,
samples that are easily misjudged)2. Stage 1: training and apply-
ing a hard-negative sampleminer. We first train a hard-negative
sample miner by using all the positive samples from the migration
data and an equal number of randomly selected negative samples
from the migration data. Then we apply this miner to mine hard-
negative samples (i.e., negative samples that are easily misjudged
as positive samples) in the migration data. Stage 2: training a
matching model. We then train a matching model for identifying
the matching relations of the widgets using all the positive sam-
ples in the migration data and all the mined hard-negative samples
produced in the first stage. Note that, the ratio of the used positive
and negative samples is about 1:4 as illustrated in Section 3.4.

We evaluate TEMdroid on 34 real-world apps in eight categories
from the SemFinder dataset3 [9] and the Craftdroid dataset [4].
The experimental results demonstrate that TEMdroid is effective in
event matching4 (i.e., widget matching and target event synthesis)
and test case migration. In terms of event matching, TEMdroid
achieves a Top1 accuracy of 76%, improving more than 17% over
the baseline approaches [18, 34, 46, 58]. In terms of test case migra-
tion, the F1-score for TEMdroid is 89%, outperforming the baseline
approach by 7%. Moreover, we evaluate the usefulness of TEMdroid
on 5 highly popular industrial apps (beyond the preceding 34 apps
from the existing datasets). TEMdroid achieves an F1-score of 87%,
demonstrating its usefulness in real-world scenarios.

This paper makes the following main contributions:
• The first learning-based widget matching approach named
TEMdroid for migrating test cases across apps.

• Empirical evaluations on real-world apps demonstrating the
effectiveness and usefulness of TEMdroid.

2 RUNNING EXAMPLE
Figure 1 shows the migration of a test case for registration from a
source app to a target app. This example is adapted from test cases
for shopping apps in the Craftdroid dataset [4]. We tailor off some
widgets for ease of presentation.

Specifically, associated with two GUI screens (S1 and S2), the
source test case includes six events and one assertion. A user in-
puts different information to the five widgets (S1-1 to S1-5) and
generates five events. Then the user clicks the “Create Account”
button (S1-6) to generate the sixth event. The assertion checks for
successful completion of the registration process, represented by
a transition to a new screen (S2) with the username (S2-1). Asso-
ciated with three GUI screens (T1 to T3), the migrated target test
case, which implements similar functionalities, includes five events
corresponding to five widgets (T2-1 to T2-5), and one assertion
associated with a widget (T3-1).

During test case migration, widget semantics is typically cap-
tured as sequences of words; however, using contextual information

2The idea of mining hard samples is borrowed from computer vision [71, 76, 80].
3We refer to the dataset provided by Marini et al. [58] as “the SemFinder dataset”, and
the empirical study provided by them as “the SemFinder study”. We use “SemFinder”
to denote the matching approach provided by them.
4We evaluate TEMdroid and the baselines in event matching rather than in widget
matching, as event matching is the common evaluation task used in related work [58].
Section 4 discusses the differences between event matching and test case migration.
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Figure 1: Excerpted registration processes on two shopping apps.
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Figure 2: TEMdroid.

is important here. In particular, the same word may contain dif-
ferent semantics within different widgets due to distinct contexts.
For example, the semantics of “Create” in the common context is
to build something, being different from the semantics of “Regis-
ter”. However, within shopping apps, the combined use of “Create
Account” (S1-6) shares similar semantics as “Register” (T2-5).

3 TEMDROID
Given a source app, a source test case, and a target app as input,
TEMdroid (whose workflow is shown in Figure 2a) outputs a mi-
grated test case for the target app using three components. First, for
each source event or each source assertion in the source test case,
the component of candidate-widget selection (Section 3.1) identifies
a sequence of candidate widgets from the target app. Second, the
component of widget matching (Section 3.2) identifies matched
target widgets from the candidate widgets by a learning-based
matching model. Third, the component of event/assertion synthesis
(Section 3.3) synthesizes target events or target assertions based
on the matched target widgets and corresponding source events
or source assertions. The synthesized target events and the target
assertions are used to form the target test case.

3.1 Candidate-Widget Selection
Aiming to identify candidate widgets in the target app for further
widget matching, TEMdroid’s component of candidate-widget selec-
tion is based on ATM [18], but it explores the target app dynamically
rather than requiring prior static analysis of the target app. This
strategy makes TEMdroid more practical for real-world apps where
access to the source code may not be feasible.

Given a source test case, TEMdroid extracts a sequence of source
events and source assertions and launches the target app. The cur-
rent GUI screen is the landing screen. For each source event or
source assertion, TEMdroid tries to find a matched target widget in
the current GUI screen of the target app, according to TEMdroid’s
matching model. Details of the matching model are shown in Sec-
tion 3.2. After finding the matched target widget, TEMdroid updates
the current GUI screen.

If TEMdroid does not find any matched target widget in the cur-
rent GUI screen, it then uses three steps to try to find two candidate
widgets based on two strategies and select a matched widget. First,
TEMdroid tries to find a target widget in the current GUI screen
that matches the subsequent 𝑘 (a predefined parameter) source
events or source assertions. Specifically, among the subsequent 𝑘
source events or source assertions, TEMdroid sequentially tries
to find the first target widget that matches the source event or
source assertion and saves the similarity score between the target
widget and the source event or source assertion obtained from the
matching model. The target widget is the selected widget by the first
strategy. Second, in the directly or indirectly reached screens of
the current GUI screen, TEMdroid tries to find a target widget that
matches the current source event or source assertion. Specifically,
TEMdroid leverages the technique of breadth-first search to explore
directly or indirectly reached screens of the current GUI screen
within a predefined time limit and tries to find the first target widget
that matches the source event among these screens. TEMdroid also
saves the similarity score of the target widget. The target widget is
the selected widget by the second strategy. Third, after trying both
strategies, if TEMdroid finds two target widgets, TEMdroid selects
the target widget with a higher similarity score as the matched
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target widget. If TEMdroid only finds one target widget, the target
widget is deemed the matched target widget. Otherwise, TEMdroid
does not find any matched target widget for this source event or
source assertion.

3.2 Widget Matching
This section presents the process of training a matching model,
which comprises four main parts, for widget matching. First, Sec-
tion 3.2.1 introduces the inputs used in the matching model. Second,
Section 3.2.2 explains the neural architecture of the matching model.
Third, Section 3.2.3 describes the methodology used to train the
matching model. Fourth, Section 3.2.4 illustrates the training pro-
cess for the matching model.

3.2.1 Feature extraction. TEMdroid extracts text features to com-
pare two widgets with two steps. First, TEMdroid extracts widget
text, widget explanation, andwidget identity from each widget. For
each GUI widget𝑤 , TEMdroid obtains the preceding three features
of 𝑤 according to text, content-desc, and resource-id from the
GUI layout file of𝑤 . Second, the text features are concatenated and
fed into TEMdroid’s matching model.

If all the three features (i.e., the widget text, widget explanation,
and widget identity) are empty for a widget𝑤 , TEMdroid uses the
neighbor text to represent this widget with two steps. First, TEM-
droid extracts a sequence of candidate widgets that belong to the
father and children widgets of𝑤 in the GUI layout file. The candi-
date widgets are required to comprise widget texts. Second, from
the candidate widgets, TEMdroid selects a widget that is closest to
𝑤 . The widget text of this widget is used as the neighbor text of𝑤 .
For example, in Figure 1, the neighbor text of the conversation icon
(T3-2) is Conversations.

3.2.2 Model architecture. As illustrated in Figure 2b, the main ar-
chitecture of TEMdroid comprises three distinct but interconnected
modules. Initiated with a pair of text features representing two wid-
gets, TEMdroid first processes these inputs into high-dimensional
vectors through the context-extraction module. Second, these vectors
are aligned in the same semantic space via the semantic-alignment
module. Third, the widget-assessment module calculates a similarity
score for the two widgets.

Context-extraction module. This module aims to generate
context-aware embeddings for the text features of each widget, thus
using its contextual information in widget matching. Specifically,
this module employs two key mechanisms: the encoding mechanism
and pooling mechanism.

Encoding mechanism. To integrate contextual information, TEM-
droid requires the use of a context-comprehending pre-trained
model. For this purpose, we use BERT as the encoding mechanism
due to its widespread popularity as a pre-training model for context
understanding in natural language processing [52, 70] and software
engineering [21, 45, 81].

BERT [25] uses a self-attention [79] mechanism to encode con-
textual information. The self-attention mechanism is computed as
Eqn. (1). Here,𝑄 , 𝐾 , and𝑉 refer to the query, key, and value vector,
respectively. Matrix 𝐴 represents the attention score.

𝐴 = softmax
(
𝑄𝐾T
√
𝑑

)
𝑌 = 𝐴𝑉 (1)

In TEMdroid, we obtain the textual information (i.e., text fea-
tures) for each widget from the feature extraction step (see Sec-
tion 3.2.1) as a word sequence, and send the word sequence into
BERT. The embedding of each word in a sequence is integrated with
the remaining words’ embeddings, enabling the representation of
each word to contain contextual information.

Pooling mechanism. To leverage the embeddings generated from
the encoding mechanism for the matching task, a pooling mecha-
nism is needed to combine these embeddings into a high-dimensional
vector representing the widget. Instead of employing the max or
mean pooling mechanism, TEMdroid employs sentence embedding
as the pooling mechanism to better capture the widget semantics.

Sentence embedding [60, 73] (originated from BERT [19]) repre-
sents a word sequence as a fixed-length vector. The key insight is
that the semantics of a sentence is constructed from the semantics
of individual words and their relations with each other. For this
purpose, the authors of BERT design a unique token (i.e., “[CLS]”)
to symbolize the word sequence during the pre-training phase. Mo-
tivated by the sentence embedding, TEMdroid adopts the output
embedding of the “[CLS]” token as each widget’s embedding. Vari-
ous apps [15, 35] with BERT also employ sentence embeddings to
capture the semantics of word sequences and achieve promising
effectiveness in downstream tasks.

Semantic-alignment module. For a fair comparison between
two widgets in the same semantic space, we design a semantic-
alignment module that aligns the semantics of the two widgets via
weight sharing and non-linear transformation.

Siamese network. TEMdroid uses a Siamese network [24] to fa-
cilitate weight sharing between the context-extraction modules
of source widgets and target widgets. In TEMdroid, the Siamese
network, a prevalent network architecture for matching tasks [24,
61, 64], uses two identical sub-networks [24] to process the text
features of both the source and target widgets. The Siamese net-
work shares parameters between the two sub-networks, thereby
transforming the representations of both widgets into a common
semantic space. This mechanism ensures that both widgets are
compared under equivalent conditions.

Transformation layer. To learn non-linear relations, a Multilayer
Perceptron (MLP) is typically integrated prior to thewidget-assessment
module [33, 36]. The MLP in TEMdroid has one hidden layer with
ℎ𝑖𝑑𝑑𝑒𝑛_𝑘𝑒𝑟𝑛𝑒𝑙 , using ReLU [63] as the activation.

Widget-assessment module. This module is to calculate a
similarity score based on the final representations of two widgets.
Following previous matching models [30, 44, 48], TEMdroid uses
the cosine distance between the generated vectors from MLPs as
the similarity assessment metric. The cosine similarity score is 1
for two identical vectors and 0 for two totally different vectors.

In general, given the two widgets with textual information 𝑡1,
𝑡2, Eqn. (2) obtains the semantic representation of each widget
through the context-extraction module and semantic-alignment
module. The similarity of the two widgets is then calculated in the
widget-assessment module using Eqn. (3), where \ is a collection
of all shared parameters including BERT parameters \BERT, MLP
weights𝑊1,𝑊2, 𝑏1, and 𝑏2.

𝐸 (𝑡, \ ) = ReLU (BERT (𝑡, \BERT)𝑊1 + 𝑏1)𝑊2 + 𝑏2 (2)

𝑠𝑖 = cos
(
𝐸
(
𝑡𝑖,1, \

)
, 𝐸

(
𝑡𝑖,2, \

) )
(3)
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3.2.3 Training and inference. This section illustrates training and
inference in TEMdroid.

Training. The training process of TEMdroid’s matching model
involves a fine-tuning process of BERT. Here, we describe the
fine-tuning process for a pre-trained model. Notably, a pre-trained
model has been trained on a large corpus incorporating various self-
supervised tasks. Fine-tuning is to adjust the pre-trained model’s
parameters using a smaller learning rate and a domain-specific cor-
pus. This approach requires fewer domain-specific data and reduces
training time compared to learning from scratch [25].

To enhance BERT’s comprehension of the semantics of widgets in
widget matching, we fine-tune a pre-trained BERT using migration
data for GUI test cases during the training process with two steps.
First, the matching model loads the pre-trained parameters of BERT
and adjusts these parameters via backpropagation with migration
data. This way helps BERT exploit both the knowledge of the pre-
trained language model and that specific to test case migration
within a short time and with fewer data. Second, TEMdroid uses
the mean squared error (MSE) loss to calculate the distance between
the predicted results 𝑠𝑖 and the ground truth label 𝑙𝑖 . This way helps
optimize the matching model.

minimize
∑︁
𝑖

|𝑠𝑖 − 𝑙𝑖 |2 (4)

Inference. For each pair of two widgets, TEMdroid inputs two
sequences of textual information to the matching model. If the
similarity score is above a threshold, TEMdroid then predicts that
the widget pair is a matched widget pair; otherwise, TEMdroid
deems the widget pair not matched.

3.2.4 Two-stage training strategy. In widget matching, positive
samples are much fewer than negative samples. For example, in Fig-
ure 1, the should-be-matched widget of “Create Account” (S1-6) is
“Register” (T2-5). In this case, there is only one positive sample, i.e.,
“Create Account” and “Register”. However, “Create Account” and
all other widgets in the target app form negative samples. Since the
number of positive samples are much fewer than negative samples,
it is not practical to train a model with all positive samples and
negative samples. To train a matching model, we need to balance
the number of positive samples and negative samples.

Inspired by the idea of mining hard samples (i.e., the samples
that are easily misjudged) explored in computer vision [71, 76, 80],
we use a two-stage training strategy to mine hard-negative samples
and train TEMdroid’s matching model using mined hard-negative
samples and all the positive samples in the migration data. The
overview of our two-stage training strategy is shown in Figure 2c.

Stage 1: training and applying a hard-negative sample
miner. We train a model as a hard-negative sample miner using
all the positive samples and an equal number of randomly selected
negative samples in the migration data. This model architecture is
the same as the architecture in Section 3.2.2.

We further construct a candidate negative set for mining the
hard-negative samples. For each positive sample ⟨𝑤𝑠 ,𝑤𝑡 ⟩, we gen-
erate a list of negative samples

〈
𝑤𝑠 ,𝑤

′
𝑡

〉
, where 𝑤𝑡 and 𝑤 ′

𝑡 are in
the same GUI screen. We use the trained hard-negative sample
miner to predict the matching relations for the negative samples

in the candidate negative set. The hard-negative samples are those
misjudged by our hard-negative sample miner.

Stage 2: training a matching model. We train a model as
TEMdroid’s matching model using all the positive samples in the
migration data and all the hard-negative samples mined in the first
stage. The training process uses stochastic gradient descent with
the Adam optimizer.

3.3 Event/Assertion Synthesis
TEMdroid leverages a sequence of matched widget pairs along with
their corresponding source events (comprising widgets, actions,
and optional input values) or source assertions (comprising wid-
gets, conditions, and optional text properties) to synthesize target
events and target assertions that can be used to form the target
test cases. Event synthesis. For each matched widget pair and
its corresponding source event, TEMdroid uses the source action,
source input value, and target widget to synthesize the target event.
If the target event cannot be executed in the target app, TEMdroid
selects other common actions of the widget type that the target
widget belongs to. For example, in a shopping cart of a shopping
app, removing a product widget with a TextView widget type may
be performed by a swipe, while the same task in another shopping
app might be performed by a long click. To overcome this challenge,
TEMdroid considers common actions of the widget type and finds
the one that properly works on the widget in the target app as the
action of the target event. Assertion synthesis. For each matched
widget pair and its corresponding source assertion, TEMdroid em-
ploys the source condition, source property, and target widget to
synthesize the target assertion.

3.4 Implementation
We implement TEMdroid in Python. For the component of candidate-
widget selection, TEMdroid sets the forward-search steps 𝑘 to be 2
and uses a Pixel 3 Emulator running Android 6.0 to explore apps.
The matching model of TEMdroid is implemented based on Py-
Torch [8] and the pre-trained BERT is from Huggingface [3]. We
set the ℎ𝑖𝑑𝑑𝑒𝑛_𝑘𝑒𝑟𝑛𝑒𝑙 to be 700. To train a hard-negative sample
miner, we use all the positive samples and an equal number of neg-
ative samples in the migration data. The number of hard-negative
samples mined by the hard-negative sample miner is four times the
number of positive samples. The training process of TEMdroid’s
matching model uses one NVIDIA TITAN RTX GPU.

4 EVALUATION
We evaluate TEMdroid from three aspects. First, event matching,
which involves widget matching and target event synthesis, is the
central step of test case migration [58]. Thus, we use event matching
to evaluate the effectiveness of TEMdroid’smatchingmodel. Second,
we assess the impact of each technique of TEMdroid’s matching
model in event matching. Third, since the goal of TEMdroid is to
migrate test cases, we evaluate the effectiveness of TEMdroid in
test case migration.

The corresponding research questions are as follows.
RQ1: How does TEMdroid perform in event matching?
RQ2: How do TEMdroid’s techniques affect event matching?
RQ3: How effective is TEMdroid in test case migration?
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Table 1: Statistics of benchmark apps.

Dataset Category App Test Event Assertion Ave_size

SemFinder

Expense 4 4 27 - 3.6M
Note 3 3 12 - 2.1M
Shopping-list 4 4 21 - 2.0M
Browser 4 4 15 - 4.8M
To-do 5 5 23 - 1.6M
Mail 2 3 12 - 15.9M
Calculator 5 5 18 - 1.7M

Total 27 28 128 - -

Craftdroid

Browser 5 10 22 15 4.3M
To-do 5 10 24 10 1.6M
Shopping 4 8 32 8 25.3M
Mail 4 8 20 12 11.0M
Calculator 5 10 19 5 1.7M

Total 23 46 117 50 -

4.1 Experimental Setup
Experimental subjects. There are some datasets [2, 4, 5, 9] avail-
able for evaluating event matching and test case migration. In terms
of event matching, we use the SemFinder dataset [9], as it is specif-
ically designed for this purpose. The SemFinder dataset includes
popular apps with more than 1000 downloads in Google Play [6].
In terms of test case migration, we use the Craftdroid dataset [4], a
popular dataset (for test case migration) that has been used in previ-
ous studies [47, 50, 58]. According to Craftdroid [46], the Craftdroid
dataset [4] consists of 25 apps from five typical categories used in
mobile testing [55, 56, 69].

For the selection of apps, we consider all the installable apps
provided by the SemFinder dataset and Craftdroid dataset as our
experimental subjects5. Therefore, we exclude three outdated apps
from our experimental subjects. The apps in our experimental sub-
jects cover eight categories, representing the broadest range of app
categories compared with the experimental subjects used in related
studies [18, 34, 46]. The basic statistics of our experimental subjects,
including the average app size for each category, are shown in Ta-
ble 1. Detailed app information can be found in our repository [10]
due to space limit.

Ground truth. The Craftdroid dataset provides the test case
migration relations from source apps to target apps with 674 should-
be-matched event pairs and 291 should-be-matched assertion pairs.
The SemFinder dataset provides event matching relations with 295
should-be-matched and 4,649 should-not-be-matched event pairs.

Dataset division. For event matching, we use a five-fold cross-
validation strategy [20] to train TEMdroid’s matching model. We
also ensure that the target app never appears in the training dataset
during testing. Specifically, we randomly divide the apps into five
folds, with each fold containing 20% of the apps. During each round
(total of five rounds) of cross-validation, we use the apps in one
fold as the test apps and the apps in the other four folds as the
training apps. When training TEMdroid in each round, we keep
only the widget pairs where both the source widgets and the target
widgets are in the training apps. On the other hand, when evaluating

5The SemFinder dataset and Craftdroid dataset share 16 common apps, leading to 34
distinct popular industrial apps in our experimental subjects.

TEMdroid, we use the widget pairs where the target widgets are in
the test apps.We also choose 20% of the training set as the validation
set to select the hyper-parameters in Section 3.4.

For test case migration, we also randomly divide the apps into
five folds. Each target app is assigned to a unique test set, and
the matching model trained for this test set is used for test case
migration of the target app.

Baselines. For event matching, SemFinder [58] is the state-of-
the-art approach. Additionally, the matching results of ATM [18]
and Craftdroid [46] on the SemFinder dataset are publicly available.
Therefore, we compare TEMdroid with SemFinder [58], ATM [18],
and Craftdroid [46] on the SemFinder dataset for event matching.
For test case migration, Craftdroid [46] is the state-of-the-art ap-
proach. Since there are no other approaches with published results
on the Craftdroid dataset, we compare TEMdroid solely with Craft-
droid [46] for test case migration.

Evaluation metrics. In event matching, we assess TEMdroid
and compare it with baseline approaches, employing twowidely rec-
ognized statistical metrics for matching tasks [23, 58], namely MRR
and Top1, which have also been adopted in previous studies [58].
MRR (i.e., mean reciprocal rank) is the average of the reciprocal
ranks of total queries 𝑄 . On the other hand, Top1 accuracy is the
ratio of queries where the ground truth has the highest similarity
score in the returned list of event pairs.

𝑀𝑅𝑅 =
1
|𝑄 |

|𝑄 |∑︁
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

(5)

𝑇𝑜𝑝1 =
1
|𝑄 |

|𝑄 |∑︁
𝑖=1

{
1, if 𝑟𝑎𝑛𝑘𝑖 = 1
0, otherwise

(6)

In test case migration, given a source event from a source test
case and a target app, a migration approach tries to find a matched
target widget and synthesize a target event. For a synthesized tar-
get event, there can be three kinds of results. (1) A synthesized
target event is an event in the ground truth (TP). (2) A synthesized
target event cannot be found in the ground truth (FP). (3) A target
event in the ground truth is not found by the migration approach
(FN ). For a synthesized assertion, there can also be the preceding
results. To study the effectiveness of TEMdroid and compare it
with the baseline approach, we use the same three metrics (i.e.,
Precision, Recall, and F1-score). These metrics have been used in
previous studies [18, 46, 85] to measure the effectiveness of test
case migration.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) (7)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁 ) (8)

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (9)

4.2 RQ1: Event Matching
To answer this question, we evaluate the effectiveness of TEMdroid
within the same categories (Section 4.2.1) and compare it with base-
lines based on the SemFinder dataset. Furthermore, we evaluate the
generalizability of TEMdroid across app categories (Section 4.2.2).
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Table 2: Evaluation of TEMdroid in event matching.

Category
TEMdroid_E TEMdroid_G

Top1 MRR Top1 MRR

Expense 71% 81% 45% 63%
Note 85% 93% 55% 69%
Shopping-list 55% 73% 50% 63%
Browser 94% 94% 62% 76%
To-do 69% 81% 59% 74%
Mail 100% 100% 90% 95%
Calculator 83% 92% 56% 66%

Total 76% 85% 57% 71%

Table 3: Matching effectiveness of TEMdroid and baselines.

Approach TEMdroid_E TEMdroid_G SemFinder ATM Craftdroid

Top1 76% 57% 65% 45% 45%
MRR 85% 71% 79% 67% 65%

Table 4: Examples of the event matching results.

Source Target TEMdroid SemFinder Match

note body edit note content 0.987 0.289 Yes
guest number edit text bill content main 0.002 0.204 No

4.2.1 Effectiveness of TEMdroid. This section prsents the results
and related analysis of TEMdroid in event matching.

Matching results. TEMdroid’s results in event matching for
the SemFinder dataset are shown in the column “TEMdroid_E”
(i.e., the effectiveness of TEMdroid) of Table 2. Baseline results (i.e.,
SemFinder [58], ATM [18], and Craftdroid [46]) are shown in Table 3.
TEMdroid achieves a Top1 accuracy of 76% and an MRR of 85%,
surpassing the baselines by more than 17% and 8%, respectively.

These results indicate that TEMdroid is effective in event match-
ing and outperforms the baseline approaches. Following the finding
of a previous study [58], Top1 accuracy is more important to evalu-
ate event matching approaches than MRR, as event matching is a
core component of test case migration, and migration approaches
often choose the Top1 events as the matched events. TEMdroid
substantially improves Top1 accuracy compared to the baselines,
indicating that TEMdroid’s matching model is more suitable for
test case migration.

We observe that the effectiveness of event matching for TEM-
droid varies across different categories, with Top1 accuracy ranging
from 100% for Mail apps to 55% for Shopping-list apps. This effec-
tiveness is similar to baselines [18, 46, 58]6. We notice that Mail apps
typically have a main screen with only a few actionable widgets to
write and check emails. This simplicity in app design makes event
matching easier. On the other hand, Shopping-list apps include
multiple screens and widgets that implement different but relevant
functionalities. This complexity makes it more challenging to find
correct matches.

6The detailed results of baseline approaches can be found in our repository [10].
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Figure 3: Attention weight visualization for TEMdroid.

Case study. To better understand why TEMdroid outperforms
the baselines, we delve into specific cases where TEMdroid achieves
accurate matches whereas baselines do not. Table 4 provides some
instances, showing the textual information extracted from the wid-
gets, similarity scores computed by TEMdroid and SemFinder (the
state-of-the-art approach), and corresponding ground truth match-
ing results (i.e., “Yes” for should-be-matched pairs and “No” for
should-not-be-matched pairs).

The widgets of the first example are derived from Note apps.
Although “body” or “edit” lacks semantic similarity to “content” in
isolation, the combined use of “body edit” often indicates writing
texts in a Note app. This context is similar to “content” (i.e., the
texts of a note). TEMdroid can match the two widgets correctly by
using contextual information.

To substantiate this hypothesis, we visualize the attentionweights
of the first hidden layer in TEMdroid’s matching model for these
widgets, as depicted in Figure 3. Notably, the left part of Figure 3
reveals “note” directing attention to both “body” and “edit”, whereas
in the right part, “note” pays attention to “content”. In these con-
texts, “body edit” and “content” are likely to have similar semantics.
Thus, these visualizations support our hypothesis.

To further validate that TEMdroid’s matching model effectively
captures contextual information rather than solely relying on spe-
cific word correspondence, we also analyze widget pairs that share
common words but should have opposite matching relations. The
widget pairs in the first and second rows of Table 4 demonstrate such
instances. Despite having the common words “edit” and “content”,
these pairs have contrasting matching relations. TEMdroid accu-
rately predicts the correct results for these pairs, whereas SemFinder
fails. Additionally, we also encounter widget pairs (with the same
word “note”) that should not match. In these situations, TEMdroid
also correctly predicts the matching results. These examples illus-
trate that TEMdroid primarily determines widget matching based
on contextual information.

Failure analysis. To understand the weakness of TEMdroid, we
manually analyze 25% of the samples that the Top1 event pairs are
incorrect in the SemFinder dataset, and summarize two reasons.
First, our matching model misunderstands some related but differ-
ent widgets. Wrongly understanding textual information leads to
matching errors. Second, the textual information extracted from
some widgets cannot represent the semantics of the widgets, lead-
ing to our matching model not being able to match the should-be-
matched widgets.
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Table 5: Contributions of each technique in TEMdroid.

Technique Top1 MRR

TEMdroid 76% 85%

w/o Siamese network 49% 67%
w/o Fine-tuning BERT 37% 54%
w/o Contextual information 58% 73%
w/o Hard-negative samples 37% 52%

4.2.2 Generalizability of TEMdroid. To evaluate the generalizabil-
ity of TEMdroid across app categories, we divide the app categories
of the SemFinder dataset (outlined in Table 1) into two parts: the
first part consists of the first three categories, while the second part
includes the remaining four categories. We train TEMdroid on one
part and test it on the other part to ensure that the app categories
of the test data have not appeared in training.

Matching results. The results of this experiment, as displayed
in the column “TEMdroid_G” (representing the generalizability
of TEMdroid) of Table 2, show that TEMdroid achieves a Top1
score of 57% and an MRR score of 71% when the categories of the
test apps have not appeared in training. Furthermore, we compare
these results with the baselines [18, 46, 58] for event matching
(see Table 3) within the same categories (i.e., the categories of the
test apps have appeared in training). Even in this unfair setting,
TEMdroid outperforms bothATMandCraftdroid, and is comparable
to SemFinder. These results demonstrate that TEMdroid performs
well to adapt across different app categories.

Based on the preceding analysis, we draw the following con-
clusion to RQ1: TEMdroid is effective and substantially outperforms
the baselines in event matching. In addition, TEMdroid has good
generalizability across different app categories.

4.3 RQ2: Ablation Study of TEMdroid
We evaluate the effectiveness of the main techniques used in TEM-
droid on the SemFinder dataset. These techniques include the use of
a Siamese network, fine-tuning BERT, using contextual information,
and mining hard-negative samples.

Experimental setting. To assess the effectiveness of the main
techniques used in TEMdroid, we conduct various experiments on
the SemFinder dataset. First, we train a non-Siamese network, of
which the two BERTs and two MLPs do not share weights, to evalu-
ate the effectiveness of selecting the Siamese network in TEMdroid.
Second, we evaluate the effectiveness of the fine-tuning process of
BERT by training a Siamese network with fixed parameters of the
pre-trained BERT. Third, to evaluate the effectiveness of using con-
textual information, we train a matching model where we remove
BERT’s attention mechanism and directly output the pre-trained
BERT’s word embeddings as the final representations. Based on this
modification, the embedding of the first token “[CLS]” becomes a
constant value, so we have to adjust the representation approach by
using the average embedding of all words to represent the seman-
tics of the whole sentence. Fourth, we evaluate the effectiveness
of the mined hard-negative samples by training a matching model
with an equal number of randomly selected negative samples, using
the same model architecture as TEMdroid.

Table 6: Migration effectiveness of TEMdroid and Craftdroid.

Approach Category Type Precision Recall F1

TEMdroid

Browser
Event 100% 100% 100%
Assertion 100% 100% 100%
All 100% 100% 100%

To-do
Event 76% 90% 82%
Assertion 70% 100% 82%
All 74% 93% 82%

Shopping
Event 75% 82% 78%
Assertion 83% 71% 76%
All 76% 80% 78%

Mail
Event 88% 100% 94%
Assertion 88% 100% 94%
All 88% 100% 94%

Calculator
Event 87% 90% 88%
Assertion 100% 100% 100%
All 90% 92% 91%

Total
Event 85% 92% 88%
Assertion 89% 96% 92%
All 86% 93% 89%

Craftdroid Total
Event 71% 93% 81%
Assertion 90% 89% 90%
All 77% 91% 83%

Results for ablation study. The results of the ablation study are
presented in Table 5. The first row displays the overall effectiveness
(76% Top1) of TEMdroid in event matching, being discussed in Sec-
tion 4.2. The subsequent rows show the effectiveness of TEMdroid’s
ablation models. The results indicate that the mined hard-negative
samples (37% Top1) and fine-tuning process (37% Top1) have the
most substantial impact on improving event matching. Additionally,
contextual information (58% Top1) and the Siamese network (49%
Top1) are crucial for enhancing effectiveness.

Based on the preceding analysis, we draw the conclusion to RQ2:
TEMdroid’s techniques substantially contribute to event matching.

4.4 RQ3: Test Case Migration
We evaluate the effectiveness of TEMdroid in test case migration
and compare it with a baseline approach on the Craftdroid dataset.

Migration results. Table 6 presents the effectiveness of TEM-
droid and Craftdroid in test case migration. TEMdroid achieves a
precision of 86%, a recall of 93%, and an F1-score of 89%, which are
12%, 2%, and 7% higher than Craftdroid, respectively.

In test case migration, precision is a crucial metric because it
measures the accuracy of the generated test cases. A high precision
score indicates that the generated test cases contain fewer error
events and assertions, and are more likely to be executed without
human intervention. In contrast, a low precision score indicates that
the generated test cases are less accurate and require more human
effort for revision. Therefore, improving precision is important to
reduce human effort and ensure the quality of the generated test
cases. Notably, TEMdroid’s precision score (i.e., 86%) is 12% higher
than Craftdroid, indicating that TEMdroid is more likely to generate
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fully correct test cases without the need for human intervention.
This characteristic makes TEMdroid a valuable tool for developers
looking to reduce their workload. Regarding recall improvement,
the baseline approach achieves a high recall of 91%, making it more
challenging to improve upon. However, TEMdroid still manages to
improve recall by 2%, demonstrating its effectiveness in test case
migration. Overall, these results highlight the potential superiority
of TEMdroid for test case migration.

Although TEMdroid’s improvement over Craftdroid is not as
substantial as in event matching, it still shows a promising im-
provement in precision, recall, and F1-score. The reason for this
difference in improvement is that TEMdroid mainly focuses on
the improvement of the component of widget matching, which is
responsible for matching source widgets to target widgets, whereas
the component of candidate-widget selection has fewer rules than
Craftdroid. This limitation makes TEMdroid sometimes unable to
reach the correct GUI screens. Adding more exploration rules could
further enhance TEMdroid’s effectiveness.

Efficiency Study.We compare the runtime information between
TEMdroid and Craftdroid on the Craftdroid dataset. The training
time of TEMdroid on the Craftdroid dataset is approximately 34
minutes, which is a one-time labor-intensive task. Once trained,
TEMdroid is able to migrate a test case with an average of 9 min-
utes. In contrast, the baseline approach Craftdroid, as reported in
previous work [46], has an average runtime of approximately 89
minutes for each test case migration. Therefore, TEMdroid offers a
substantial speed improvement compared to Craftdroid.

4.5 Threats to Validity
A possible threat to external validity is the generalization to other
mobile apps and test cases.Wemitigate this threat by using themost
app categories compared with the experimental subjects of existing
studies [18, 34, 46]. A possible threat to the internal validity is the
possible mistakes involved in our implementation and experiments.
We mitigate this threat by manually inspecting our results and ana-
lyzing the incorrect matching results. A possible threat to construct
validity is evaluation metrics. We mitigate this threat by using the
same evaluation metrics as existing research [18, 46, 58, 85].

Based on the preceding analysis, we draw a conclusion to RQ3:
TEMdroid is effective and outperforms baseline in test case migration.

5 USEFULNESS STUDY
TEMdroid has achieved high effectiveness in test case migration
using the Craftdroid dataset. However, there may be a difference
between the evaluations on this dataset and in real-world scenarios.
The evaluation on the Craftdroid dataset involves comparing the
migrated test cases with the ground truth test cases that the dataset
provides. Conversely, in real-world scenarios, the ground truth test
cases are not available. Users evaluate the effectiveness of migration
approaches according to themodifications of themigrated test cases.
To further evaluate the effectiveness of TEMdroid, we conduct a
study to assess the usefulness of TEMdroid in test case migration
with a real-world scenario. In this study, we migrate test cases from
the Craftdroid dataset to popular industrial apps in Google Play [6].

Experimental setup. To migrate test cases of apps from the
Craftdroid dataset to apps in Google Play [6], we use three steps to

identify a set of target apps in Google Play whose functionalities
are similar to those in the Craftdroid dataset. First, we maintain
an app collection for each category of the Craftdroid dataset [4];
for each app in one category, we search for the top ten similar
apps available in Google Play [6] to the app collection. Second, to
determine the target app for each category, we select the app with
the highest number of appearances in the app collection. In case
multiple apps have the same maximum appearances, we consider
the app with the highest number of downloads as the final choice.
Third, we finally attain the five selected target apps with app sizes
for the five categories as shown in Table 7. In this usefulness study,
we evaluate the effectiveness of TEMdroid by migrating test cases
from the Craftdroid dataset to these target apps.

To fairly compare the migration results on the Craftdroid dataset
(in Section 4.4) with those in this study, we select the model with
the lowest accuracy among the five models used in Section 4.4.
Instead of retraining a new model, we select one of the five models
to ensure the same training sizes of the matching models for both
experiments. Furthermore, by selecting the lowest accuracy model,
we aim to avoid bias that could potentially favor TEMdroid.

For each source test case, TEMdroid automatically migrates it
into a test case for a corresponding target app. However, as some
migrated test cases may not work in the target apps, users typically
need to modify the migrated test cases to align them with the de-
sired functionalities while minimizing the number of modifications.
Moreover, the number of modifications measures the effectiveness
of TEMdroid. To simulate this manual process, one author of this
paper manually modifies the migrated test cases if necessary. To
assure the correctness of modifications, two other authors evaluate
the modification process individually. In case of disagreement, the
three authors discuss the disagreement to reach a consensus.

Evaluation metrics.We evaluate the usefulness of TEMdroid
according to the differences between the modified test cases and
those directly migrated by TEMdroid, using Precision, Recall, and
F1-score. Following the FrUITeR study [85], we also calculate a
reduction score to assess the manual effort saved through TEMdroid
compared with writing desired test cases from scratch. Based on
the Levenshtein distance [40], we first compute the number of steps
(𝑆𝑡𝑒𝑝𝑚) required to modify a migrated test case to reach the desired
test case. In this context, a step in the Levenshtein distance refers
to an insertion, a modification, and a deletion of an event or an
assertion. Second, we compute the number of steps (𝑆𝑡𝑒𝑝𝑑 ) required
to write the desired test case from scratch. Third, we assess the
ratio of steps saved by employing the migrated test cases compared
with writing the desired test cases from scratch.

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = (𝑆𝑡𝑒𝑝𝑑 − 𝑆𝑡𝑒𝑝𝑚) / 𝑆𝑡𝑒𝑝𝑑 (10)

Migration results. In this study, TEMdroid achieves an F1-score
of 87% (see Table 7), which closely aligns with its effectiveness (an
F1-score of 89%) on the Craftdroid dataset (see Table 6). Further-
more, TEMdroid saves 82% of manual effort compared with writing
the desired test cases from scratch. Our thorough analysis, which
involves manually examining all inaccurately predicted samples,
has revealed two primary reasons. Predominantly, the inaccuracies
are related to incorrect widget matching. Additionally, there are
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Table 7: Results of the usefulness study in TEMdroid.

App Size Type Precision Recall F1 Reduction

Web Browser 5M
Event 92% 96% 94% 93%
Oracle 100% 95% 97% 97%
All 96% 96% 96% 95%

Done 1.6M
Event 76% 96% 85% 75%
Oracle 67% 100% 80% 75%
All 73% 97% 84% 75%

Fivemiles 25.4M
Event 62% 97% 75% 63%
Oracle 60% 92% 73% 60%
All 61% 95% 75% 62%

Pro Mail 98.2M
Event 85% 96% 90% 89%
Oracle 100% 96% 98% 96%
All 92% 96% 94% 93%

Tip Calculator 4.3M
Event 100% 92% 96% 90%
Oracle 89% 89% 89% 80%
All 91% 91% 91% 85%

Total 134.5M
Event 79% 95% 86% 83%
Oracle 84% 95% 89% 82%
All 80% 95% 87% 82%

also a smaller number of errors stemming from the incorrect selec-
tion of candidate widgets. By recognizing these primary sources of
inaccuracies, we can pinpoint areas for potential refinement and
improvement in TEMdroid. Overall, this study demonstrates the
strong usefulness of TEMdroid in real-world scenarios.

While this experiment demonstrates the usefulness of TEMdroid,
there is room for further validation. One potential direction for
validating the effectiveness of TEMdroid is to conduct a controlled
experiment involving two groups of developers. In this controlled
experiment, one group of developers generates target test cases
based on migrated test cases, while the other group starts from
scratch. By comparing the cost and time saving between developers
in the two groups, we could provide more concrete evidence regard-
ing the practical advantages of TEMdroid. Furthermore, expanding
the scope of the validation process by incorporating a wider range
of apps could help validate the usefulness of TEMdroid across vari-
ous app domains and scenarios, providing a more comprehensive
understanding of its practical benefits.

6 RELATEDWORK
Test case migration across apps. Based on how to achieve wid-
get matching, existing migration approaches can be divided into
two categories: classification approaches [34] and matching ap-
proaches [18, 46, 50, 59].

There is only one classification approach (i.e., AppFlow [34]) for
GUI test case migration. AppFlow uses a trained multi-classifier to
identify widget labels (e.g., menu widget) of source widgets and tar-
get widgets. A source widget and a target widget sharing the same
label are considered matched widgets. The key difference between
AppFlow and TEMdroid is the matching process. AppFlow’s match-
ing accuracy relies on classification accuracy. Lower classification
accuracy of widget labels can cause lower matching accuracy of
widgets. On the contrary, TEMdroid trains a matching model to
directly identify each should-be-matched widget pair, thus reducing
error accumulation.

Aware of the weakness of the classification task, some migra-
tion approaches [18, 46, 50, 59] formulate widget matching as a
matching task. For widget matching, ATM [18] uses word embed-
dings from word2vec [62] fine-tuned with app manuals to rep-
resent each word of widgets. Furthermore, the authors of ATM
manually define a matching function to identify matched widgets.
Compared with ATM, Craftdroid [46] and TRASM (a closed-source
approach) [50] useword embeddings from a standardword2vec [62].
Adaptdroid [59] uses word embeddings from a standard word
mover’s distance [38] (another word embedding model) to calculate
the similarity of two widgets.

There are two key differences between TEMdroid and the pre-
ceding existing matching approaches. First, the embeddings from
word2vec [62] and word mover’s distance [38], which the existing
approaches use, can represent only static word embeddings without
contextual information. However, TEMdroid uses BERT to integrate
contextual information and uses sentence embeddings to represent
widget semantics, thus making widget matching more accurate. Sec-
ond, these matching approaches rely on manually defined matching
functions, limiting their abilities to match complex relations. On the
contrary, TEMdroid trains a matching model to identify matching
relations, enabling it to handle complex scenarios.

There are also two empirical studies [58, 85] related to test case
migration. The FrUITeR study [85] builds a dataset containing
20 real-world apps, and evaluates the effectiveness of ATM [18],
Craftdroid [46], and AppFlow [34] in test case migration. The
SemFinder study [58] evaluates the effectiveness of ATM [18] and
Craftdroid [46] in event matching. There are also three related
approaches. Rida [43] targets cross-app record and replay. Mao et
al. [57] target user-behaviormining and reuse across apps. SemFinder [58]
is an event matching approach but not a migration approach.

Test case migration across platforms. Some approaches mi-
grate test cases across platforms for the same apps. TestMig [66]
leverages static analysis to guide event exploration and maps simi-
lar events from iOS to Android. MAPIT [77] performs bi-directional
test migration between Android and iOS using dynamic analysis.
LIRAT [83] leverages computer vision techniques to map simi-
lar events across platforms (including Android and iOS). TRANS-
DROID [47] is capable to migrate test cases from Web to Android.
TEMdroid’s matching model may also enhance cross-platform test
migration by improving event matching accuracy.

Automated testing. Automated testing approaches based on
exploration strategies can be classified into four categories: random
testing approaches [11, 53, 67], model-based approaches [13, 16, 29,
39, 41, 74, 82, 84, 86], systematic testing approaches [14, 28, 56], and
learning-based approaches [22, 37, 42, 68, 72, 87]. TEMdroid can
also be viewed as an automated testing approach that leverages test
cases from a source app to test a target app. However, there are two
key differences between TEMdroid and existing automated testing
approaches. First, the automated testing approaches can generate
only events, but struggle to generate oracles. However, TEMdroid
can automatically generate both events and oracles if the source test
cases contain them. Second, due to the lack of oracle information,
the automated testing approaches primarily reveal crash bugs, but
rarely reveal functional bugs. Conversely, the functional test cases
generated by TEMdroid can act as a supplement to these approaches
in revealing functional bugs.
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7 DISCUSSION
Pre-trained language models. TEMdroid uses BERT to represent
widget semantics due to its ability to perceive contextual informa-
tion. In natural language processing, there are other BERT-like large
language models (LLMs), such as RoBERTa [52], DistilBERT [70],
and MobileBERT [75]. RoBERTa has the same architecture as BERT
with a larger training set. DistilBERT and MobileBERT have similar
architectures to BERT with fewer layers. To investigate whether
the replacement of BERT with LLMs can improve the effectiveness
of TEMdroid, we replace BERT with RoBERTa and DistilBERT. We
then assess the effectiveness of the revised versions of TEMdroid
with their event matching results. The Top1 scores are 75% for
RoBERTa and 71% for DistilBERT, which are similar to the effec-
tiveness achieved using BERT (i.e., 76%). The detailed results can be
found in our repository [10]. This finding demonstrates that merely
replacing BERT with LLMs in TEMdroid does not substantially im-
prove its effectiveness.We plan to explore the design of task-specific
pre-training tasks to enhance the effectiveness of TEMdroid.

ChatGPT [1] and GPT-4 [7], two powerful language models,
demonstrate remarkable proficiency in comprehending natural lan-
guages [31, 88]. However, ChatGPT and GPT-4 cannot be directly
used or fine-tuned in a way similar to open-source models like
BERT. We intend to integrate ChatGPT/GPT-4 into TEMdroid and
investigate the potential enhancements to TEMdroid.

Impact of text features on event matching.We have inves-
tigated the impact of text features on event matching, specifically
focusing on the lengths of text features and the neighbor texts.

In our analysis of the SemFinder dataset, we examine the ef-
fectiveness of TEMdroid based on the lengths of the text features
from the source widgets. Our finding shows a fluctuating upward
trend between the lengths of the text features and the matching
results. Due to space limit, we provide detailed results in our repos-
itory [10]. This finding suggests that longer features may provide
more information, leading to improved matching accuracy. This
interesting phenomenon reinforces us to further explore the way to
improve event matching based on enhancing the short text features.

In cases where the widget resources, the widget contents, and
the widget texts of widgets are empty, TEMdroid uses neighbor
texts as text features. We observe that in the SemFinder dataset,
there are only two source widgets where TEMdroid relies on neigh-
bor texts as the text features. For both source widgets, TEMdroid
predicts the correct target widgets. Although the sample size of
the widgets using neighbor texts is limited, this finding suggests
that the neighbor text can be a valuable feature in cases where the
primary text features are not available.

Impact of widget types on event matching.We investigate
the effectiveness of TEMdroid’s matching model on the widgets
whose widget types have not appeared in the training data. Since
TEMdroid does not use widget types as a feature, we hypothesize
that the effectiveness of TEMdroid’s event matching should not be
substantially impacted when confronted with widgets whose types
are not present in the training data.

To validate this hypothesis, we train TEMdroid on the apps from
the “Mail” category in the SemFinder dataset (see Table 1) and test
it on the apps from the “Calculator” category. The “Calculator” cat-
egory includes Button widgets, which are not present in the “Mail”

category. The results (counted according to the source widget types)
indicate that the Button type, despite not appearing in the training
data, achieves a higher Top1 score than the EditText type, which
appears in the training data (i.e., 67% vs. 25%). This experiment
reinforces that TEMdroid’s matching effectiveness remains robust
even when dealing with widgets of types that do not appear in the
training data.

Component of candidate-widget selection. Apart from the
component of widget matching, existing migration approaches [18,
46, 50, 59] have also devised various strategies for the component
of candidate-widget selection. Typically, the authors of these ap-
proaches employ one of two main strategies to design this compo-
nent. ATM [18], TRASM [50], and Craftdroid [46] employ a combi-
nation of static analysis and dynamic exploration to select widgets.
This combined strategy uses the static analysis results to guide
dynamic exploration. However, it requires access to the source
code of apps. On the other hand, to enhance approach applicability,
Adaptdroid [59] and TEMdroid employ purely dynamic exploration,
thereby removing the need for source code. Future research onmore
effective dynamic exploration could help improve the effectiveness
of migration approaches.

8 CONCLUSION
In this paper, we have proposed a new approach called TEMdroid
for test case migration. TEMdroid is the first approach of widget
matching that learns a matching model trained on migration data
for GUI test cases. We have evaluated TEMdroid on 34 real-world
apps from eight categories. Our experimental results demonstrate
that using a learning-based matching model and incorporating
contextual information are effective in the tasks of event match-
ing and test case migration. TEMdroid also outperforms baseline
approaches in these two tasks.
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