
Learning to Detect Table Clones in Spreadsheets
Yakun Zhang

State Key Lab of Computer Sciences,
Institute of Software, Chinese

Academy of Sciences
University of Chinese Academy of

Sciences
Beijing, China

zhangyakun18@otcaix.iscas.ac.cn

Wensheng Dou
Jiaxin Zhu

State Key Lab of Computer Sciences,
Institute of Software, Chinese

Academy of Sciences
University of Chinese Academy of

Sciences
Beijing, China

{wsdou,zhujiaxin}@otcaix.iscas.ac.cn

Liang Xu
Jinling Institute of Technology

Nanjing, China
xuliang@jit.edu.cn

Zhiyong Zhou
National Engineering Research
Center of Fundamental Software,
Institute of Software, Chinese

Academy of Sciences
University of Chinese Academy of

Sciences
Beijing, China

zhiyong@nfs.iscas.ac.cn

Jun Wei
Dan Ye

State Key Lab of Computer Sciences,
Institute of Software, Chinese

Academy of Sciences
University of Chinese Academy of

Sciences
Beijing, China

{wj,yedan}@otcaix.iscas.ac.cn

Bo Yang
North China University of

Technology
Beijing, China

yangbo090313@163.com

ABSTRACT
In order to speed up spreadsheet development productivity, end
users can create a spreadsheet table by copying and modifying
an existing one. These two tables share the similar computational
semantics, and form a table clone. End users may modify the ta-
bles in a table clone, e.g., adding new rows and deleting columns,
thus introducing structure changes into the table clone. Our em-
pirical study on real-world spreadsheets shows that about 58.5%
of table clones involve structure changes. However, existing table
clone detection approaches in spreadsheets can only detect table
clones with the same structures. Therefore, many table clones with
structure changes cannot be detected.

We observe that, although the tables in a table clone may be
modified, they usually share the similar structures and formats, e.g.,
headers, formulas and background colors. Based on this observation,
we propose LTC (Learning to detect Table Clones), to automatically
detect table clones with or without structure changes. LTC utilizes
the structure and format information from labeled table clones and
non table clones to train a binary classifier. LTC first identifies
tables in spreadsheets, and then uses the trained binary classifier
to judge whether every two tables can form a table clone. Our
experiments on real-world spreadsheets from the EUSES and Enron
corpora show that, LTC can achieve a precision of 97.8% and recall

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397384

of 92.1% in table clone detection, significantly outperforming the
state-of-the-art technique (a precision of 37.5% and recall of 11.1%).

CCS CONCEPTS
• Applied computing→ Spreadsheets; • Software and its en-
gineering→ Software testing and debugging.

KEYWORDS
Spreadsheet, table clone, structure, format

ACM Reference Format:
Yakun Zhang, Wensheng Dou, Jiaxin Zhu, Liang Xu, Zhiyong Zhou, JunWei,
Dan Ye, and Bo Yang. 2020. Learning to Detect Table Clones in Spreadsheets.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’20), July 18–22, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3395363.3397384

1 INTRODUCTION
Spreadsheet systems are one of the most successful end-user pro-
gramming platforms, and have beenwidely used in various business
tasks, including data storage, data analysis, financial reporting and
so on [44]. Scaffidi [48] estimated that, in 2012, over 55 million
users in the United States worked with spreadsheets. There must
be many more users working with spreadsheets nowadays.

Spreadsheets are code, too. Spreadsheets usually play a similar
role to source code in conventional programming languages [25].
Similar to code reuse, end users often reuse existing spreadsheets to
speed up their development productivity. For example, a user can
prepare a new financial report by copying-pasting-modifying an
existing one, thus saving amount of time. For two tables created by
copy-paste-modify, they share the same or similar computational
semantics. We refer to them as a table clone. For example, the two
tables in Figure 1a and Figure 1b form a table clone.

528

https://doi.org/10.1145/3395363.3397384
https://doi.org/10.1145/3395363.3397384

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yakun Zhang, Wensheng Dou, Jiaxin Zhu, Liang Xu, Zhiyong Zhou, Jun Wei, Dan Ye, and Bo Yang

Similar to code clones in conventional programs [13, 32, 36, 43],
table clones can be applied on some important spreadsheet analysis
scenarios. First, table clones can be used to find the same errors
scattered in many spreadsheets. Second, inconsistent modifications
may introduce errors into table clones [18, 30], thus causing finan-
cial losses. Table clones can facilitate to detect and fix spreadsheet
errors by analyzing their inconsistencies [18]. Third, table clones
are usually used to perform the same business task. Thus, data
analysis tools, e.g., PowerBI [4], can extract and analyze all table
clones together. Fourth, table clones usually share common compu-
tational semantics and structures. Extracting table templates from
table clones can facilitate end users to create new table instances.

However, there are no records in the spreadsheet systems (e.g.,
Microsoft Excel) documenting that two tables were created by copy-
paste-modify [31]. Therefore, it is important to effectively detect
table clones in spreadsheets. Existing clone detection approaches
in spreadsheets [18, 30] mainly focus on the clones with the same
data or structures. For example, Hermans et al. [30] consider two
blocks of numerical cells with (almost) the same values as a data
clone. TableCheck [18] considers two blocks of numerical cells with
the same headers, i.e., structures, as a table clone. However, our em-
pirical study on real-world spreadsheets from the EUSES [24] and
Enron [26] corpora (Section 4.1) shows that 58.5% of table clones
involve structure changes, which cannot be detected by existing
approaches. Moreover, code clone detection approaches in conven-
tional programs, e.g., CCFinder [36], Deckard [32], CloneDetective
[35], and CCLearner [42], cannot be applied on spreadsheets, be-
cause the programming model in spreadsheets is totally different
from those in conventional programs.

In this paper, we propose LTC (Learning to detect Table Clones),
to detect table clones with or without structure changes in spread-
sheets. We observe that the structures and formats, e.g., headers,
formulas, and cell fonts, can effectively characterize the computa-
tional semantics of a table. If two tables share the same or similar
structures and formats, they are likely to be a table clone, and share
the similar computational semantics. Therefore, we can treat table
clone detection as classifying two tables as a clone or non clone
based on their structure and format similarities. Specifically, given
two tables, we extract 12 features about structures and formats
from each table, and compute the similarity score for each feature.
Then, we apply supervised classification algorithms on labeled table
clones and non table clones to train a binary classifier. With the
trained classifier, LTC first identifies tables in spreadsheets, and
then compares every two tables to detect table clones.

We evaluate LTC on the real-world spreadsheets from the EUSES
[24] and Enron [26] corpora, which are two of the most widely-
used corpora for spreadsheet research [7, 19, 22]. The experimental
results show that LTC can detect table clones effectively, with a
precision of 97.8% and recall of 92.1%. As a comparison, TableCheck
[18] can only detect table clones with a precision of 37.5% and recall
of 11.1%. This result shows that LTC can significantly outperform
existing approaches.

In summary, we make the following contributions in this paper.

• We propose a commonly-used notation in spreadsheets, table
clone, in which two tables share the similar computational
semantics.

(a) January

(b) February

(c) March

(d) April

Figure 1: Four worksheet excerpts extracted from the EU-
SES corpus [24]. The tables in every two worksheets form
a table clone. The cells in the rectangles show the key dif-
ferences between the current and previous worksheets. The
cells marked by a red right-cornered triangle contain errors.

• We propose a learning-based approach, LTC, to detect table
clones with or without structure changes, by exploiting the
structure and format similarities among tables.
• We implement LTC and evaluate it on real-world spread-
sheets from the EUSES and Enron corpora. The experimental
results show that LTC can detect table clones effectively.

2 TABLE CLONES IN SPREADSHEETS
In this section, we explain table clones and our motivation using
an illustrative spreadsheet example.

2.1 Motivating Example
Figure 1 shows four worksheet excerpts, which are extracted from
the EUSES corpus [24]. These worksheet excerpts are used to ana-
lyze the working hours in four months, i.e., from January to April.

529

Learning to Detect Table Clones in Spreadsheets ISSTA ’20, July 18–22, 2020, Virtual Event, USA

In January, Alice created worksheet January to analyze the work-
ing hours of her teammembers in January. In February, Alice copied
worksheet January, and created a new worksheet February. She
updated the data and formulas of Johnson, White and Edwards.
Because Edwards did not work in “Week 3”, Alice left cell D7 in
blank, and fixed the formulas in E7 and F7 accordingly. We can
see that the computational semantics, structures and formats in
worksheet January and February are almost the same. Similarly,
based on worksheet February, Alice created worksheet March. She
removed White (row 6 in Figure 1b) and added a new member
Amy (row 7 in Figure 1c). Note that, Alice updated the value in
D6, and forgot to update the formulas in E7 and F7, introducing
two formula errors. Further, Alice directly filled all values for Amy
without using formulas, introducing two missing formula errors in
E7 and F7. For worksheet April, Alice deleted column “Week 3” and
removed Edwards (row 6 in Figure 1c).

2.2 Table Clones
Although the four worksheet excerpts in Figure 1 have different
data (e.g., January![B5:D7]1 and February![B5:D7]), and structures
(e.g., column B-F in Figure 1c and column B-E in Figure 1d), they
have the similar computational semantics, i.e., they are all used to
analyze the working hours in the same way. Thus, the tables in
every two worksheets in Figure 1 form a table clone. For example,
January![A1:F7] and February![A1:F7] form a table clone.

Definition 1: A table is a rectangular block of cells, prescribing
certain business task. For example, January![A1:F7] in Figure 1 form
a table for storing and analyzing the working hours in January.

In spreadsheets, table is the key structure for data processing and
information presentation [15, 17]. A table typically contains the
following four elements. (1) Header cell: Header cells describe other
cells in a table. For example, January![B1:F1] and January![A1:A7]
in Figure 1a are the headers of table January![A1:F7]. Through
header cell B1 and A2, we can know that 10 in cell B2 means Green
worked for 10 hours in Week 1. (2) Data cell: Data cells store the
business data, e.g., the numerical cells in January![B2:D7] in Fig-
ure 1a. (3) Formula cell: Formula cells analyze data in a table, e.g.,
January![E2:F7] in Figure 1a. (4) Cell format: The cell formats can
facilitate user inspection. For example, header cells January![B1:F1]
are bold and italic, and have bottom borders.

Definition 2: A table clone is a table pair (t1, t2), in which ta-
ble t1 and t2 share the same or similar computational semantics,
and prescribe the same or similar business task. In Figure 1, the
tables in every two worksheets can form a table clone, e.g., table
January![A1:F7] and February![A1:F7].

Note that if a table contains only one row/column, it has limited
information, e.g., no headers or data. Thus, we require that tables in
a table clone have at least two rows and columns. We have several
observations on table clones in spreadsheets. First, headers describe
the semantics of a table, and tables in a table clone usually share the
same or similar headers. For example, table January![A1:F7] and
February![A1:F7] share the same headers. Second, formulas present
the computations, and table clones usually share the same or similar
formulas. Although the formulas in Figure 1a and Figure 1d are

1This denotes cells [B5:D7] of worksheet January in Figure 1a. We use similar form to
reference cells throughout this paper.

Figure 2: The summary of four worksheets in Figure 1.

different, they have similar computations, in which they are used to
summarize the working hours for each worker. Third, table clones
usually share similar cell formats, e.g., fonts, borders. In addition,
tables in a table clone usually store different data for similar tasks.
For example, the working hours in Figure 1a and Figure 1c are very
different. These observations motivate us to detect table clones by
learning the similarities of structures and formats in tables.

2.3 Potential Applications of Table Clones
Table clones can be further applied on some important spreadsheet
analysis scenarios, e.g., error detection, data analysis, and spread-
sheet reuse. This motivates us to effectively detect table clones in
spreadsheets. We explain these potential applications as follows.

Detecting errors related to table clones. In our motivating
example, cell E6 and F6 in Figure 1c suffer from formula errors, in
which a cell’s formula is wrong. Cell E7 and F7 in Figure 1c suffer
from missing formulas, in which a cell is supposed to contain a
formula, but it does not. In a table clone, its corresponding cells
usually share the same / similar computational semantics. The
inconsistencies among the corresponding cells usually indicate
errors. For example, cell E7 in Figure 1a and cell E6 in Figure 1c
should have the same computational semantics. However, they
contain inconsistent formulas. Based on this observation, we can
use table clones to detect spreadsheet errors by analyzing their
inconsistencies [18, 33]. Further, given a spreadsheet error, e.g., the
formula error in cell E6 of Figure 1c, we can extract all related table
clones and check whether they suffer from the same error. This
also highlights the importance of table clones.

Data integration and analysis among table clones. Table
clones are usually used to perform the same / similar business task.
However, these related tables usually scatter in many worksheets
or spreadsheets. For examples, the four tables in Figure 1 scatter in
four worksheets. For data integration, one key question is where to
find related tables. The detected table clones can be a good source
for table integration. Table clones can help manage all related tables,
and facilitate integrating all related tables into a consistent form
[15]. For example, Figure 2 is the summary of the four tables in
Figure 1. This summary table can be easily used by other data
analysis tools, e.g., Insights in Excel [3] and PowerBI [4].

Table template extraction applications.When end users reuse
an existing table, they usually need to delete the original data, and
revise the table according to new requirements [51]. These tasks
are usually daunting and error-prone. For example, end users need
to delete old data, fix formulas and fill new data when creating
Figure 1c based on Figure 1b. We cannot extract table templates
from only one table. Table clones provide a group of instances about

530

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yakun Zhang, Wensheng Dou, Jiaxin Zhu, Liang Xu, Zhiyong Zhou, Jun Wei, Dan Ye, and Bo Yang

Table 1: Table Clone Types

Variance Type-1 Type-2 Type-3 Type-4

format ◦ ◦ ◦ ◦

data ✗ ✓ ◦ ◦

formula ✗ ✓ ◦ ◦

header ✗ ✗ ✓ ◦

Row/col insertion ✗ ✗ ✗ ✓

Row/col deletion ✗ ✗ ✗ ✓

Note: ◦ = non-exclusion, ✗ = exclusion, ✓ = inclusion

how a table template is used. Given a group of table clones, we
can infer how end users reuse and revise these tables, e.g., what
semantics and structures should be kept and which cells will be
changed. Table clones can be used to extract table templates [8],
which can facilitate end users to create new table instances and
avoid errors.

2.4 Table Clone Types
In conventional programs, code clones are categorized into four
different types [13, 42] according to how developers modify code
clones. Since spreadsheets have completely different programming
model from conventional programs, the tables in a table clone can
be modified in different ways. According to how users modify tables
in a table clone, we completely redesign the clone categorization,
and further categorize table clones into four types. For a spreadsheet
table, headers, formulas and data mainly reflect its computational
semantics. Therefore, our table clone type categorization reflects
howmany computational semantics are changed. Table 1 shows the
comparison among the four types of table clones. Note that, table
clones are exclusive in their types. That’s said, a table clone cannot
belong to two types in the same time. We describe four types of
table clones as follows.
• Type-1: Type-1 table clones are identical tables allowing
variations in formats, e.g., cell formats (including height,
width, border, color, font) and hidden rows / columns.
• Type-2: Type-2 table clones have variations on data and
formulas, and also allow variations in Type-1.
• Type-3: Type-3 table clones have variations on table headers,
and also allow variations in Type-2.
• Type-4: Type-4 table clones allow extra modifications, e.g.,
inserting or deleting rows / columns, and also allow varia-
tions in Type-3.

We further illustrate the four types of table clones using Fig-
ure 1. (1) If we copy table January![A1:F7] into cells [A11:F17] in
Figure 1a, we can form a Type-1 table clone, January![A1:F7] and
January![A11:F17]. (2) Table January![A1:F7] and February![A1:F7]
only have variations in data and formulas, and form a Type-2 table
clone. Note that, headers are not changed in these two tables. (3)
Table January![A1:F7] and March![A1:F7] have different headers
(i.e., row 7), and form a Type-3 table clone. Note that, in Type-3 table
clones, two tables have the same size, i.e., row and column numbers.
(4) Table January![A1:F7] and April![A1:E6] have different row and
column numbers, and form a Type-4 table clone.

2.5 Other Clones in Spreadsheets
Hermans et al. [30] consider two blocks of numerical cells with
(almost) the same values as a data clone, e.g., January![B2:D4] and
February![B2:D4]. Data clones are very different from table clones.
TableCheck [18] considers two blocks of numerical cells with the
same headers as a table clone, e.g., January![B2:F7] and Febru-
ary![B2:F7]. Ideally, TableCheck can detect Type-1 and Type-2 table
clones. Therefore, neither data clone detection nor TableCheck can
detect Type-3 and Type-4 table clones. However, our empirical
study on real-world spreadsheets (Section 4.1) shows that, 58.5%
of table clones belong to Type-3 and Type-4. This motivates us to
detect all types of table clones.

3 LEARNING-BASED TABLE CLONE
DETECTION

The key insight of our approach is that table clones share the similar
structures and formats, even though they contain various variations.
By using structures and formats, we are able to predict whether
two tables can form a table clone.

Figure 3 presents the overview of our approach, LTC. Given
some spreadsheets, LTC first identifies tables (Section 3.1), and
then extracts 12 features about structures and formats in each table.
For every table pair from the identified tables, LTC computes their
feature similarities (Section 3.2). Finally, table clones are predicted
by leveraging a binary classification on feature similarities. To train
a binary classifier, LTC extracts 12 features from labeled table clones
and non table clones, and uses Random Forest [14] to obtain a binary
classifier (Section 3.3).

3.1 Table Identification
A spreadsheet usually contains multiple worksheets. End users may
put multiple tables into the same worksheet. For example, Figure 4
shows a worksheet excerpt, which contains two tables, i.e., [A1:G8]
and [A10:C14]. It is improper to treat the whole worksheet as a
table, since different parts of a worksheet implement different func-
tions, e.g., [A1:G8] and [A10:C14] in Figure 4 have totally different
functions. In spreadsheets, we observe that tables are usually cir-
cumscribed by empty cells, e.g., empty cells [A9:G9] in Figure 4.
We first classify spreadsheet cells into four types, and then identify
tables in each worksheet based on cell types.

3.1.1 Cell Types. We utilize the approaches proposed by Hermans
et al. [29], and classify cells into four types. (a) Data: A cell filled
with data, e.g., cell B2 in Figure 4. (b) Formula: A cell containing
a calculation on other cells, e.g., cell E2 in Figure 1a. (c) Label: A
cell containing text and expressing the meanings of other cells, e.g.,
cell B1 in Figure 4. (d) Empty: A blank cell.

We classify cells in a worksheet as follows. First, we mark all
numerical cells without formulas as data cells. Second, we mark all
numerical cells with formulas as formula cells. Third, we mark the
remaining cells contain strings as label cells. Fourth, we mark all
blank cells as empty cells.

3.1.2 Table Identification. According to Definition 1, a table is a
rectangular block of cells, in which related information prescribing
certain business task is put together. We observe that tables are
usually divided by empty cells and boundaries. For example, in

531

Learning to Detect Table Clones in Spreadsheets ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Labeled table clones Structure
Format

Spreadsheets

Feature 1: 0.9
Feature 2: 0.78
…
Feature 12: 0.1

Table 1

Structure
Format

Table 2

Binary
classifier

Non clones

Tables Table pairs

Extract features

Compute
feature similarities

Train

Predict

Clones

EnumerateIdentify

Figure 3: Overview of LTC.

Figure 4: Aworksheet excerpt extracted from the EUSES cor-
pus [24], which contains two tables: [A1:G8] and [A10:C14].

Figure 4, table [A1:G8] and [A10:C14] are divided by empty cells
[A9:G9]. Thus, we can use empty cells and boundaries to identify
tables in a worksheet.

Given aworksheet, our basic table identification algorithmworks
as follows. (a) We treat the whole worksheet as a cell block. (b) For
a cell block, we identify all empty rows and columns in the cell
block. If we find some empty rows or columns, we divide the cell
block into multiple cell blocks according to the identified empty
rows and columns. (c) For each new identified cell block, we repeat
the second step, until we cannot find any new cell blocks.

Take the worksheet in Figure 4 as an example. We first identify
two empty rows, i.e., row 6 and 9, and thus divide the worksheet
into three cell blocks, i.e., [A1:G5], [A7:G8] and [A10:G14]. Further,
column D-G in cell block [A10:G14] are empty, thus, we obtain a
new cell block [A10:C14]. So far, we obtain three cell blocks, i.e.,
[A1:G5], [A7:G8] and [A10:C14].

However, we cannot treat these three cell blocks as three tables.
A table can be separated into multiple cell blocks by empty rows and
columns. For example, cell block [A1:G5] and [A7:G8] in Figure 4
should belong to the same table [A1:G8], because cells [A7:G8] are
used to compute the total and max hours for cells [B2:G5], and
empty row 6 is used to separated data and computation. Inspired
by ExpCheck [20], we further merge related cell blocks into a big
one by using table header information (Section 3.1.3). We observe
that, although a table can be separated into multiple cell blocks
by empty rows / columns, they usually share the same headers.
For example, in Figure 4, cell block [A1:G5] and [A7:G8] share the

Algorithm 1: Identifying column headers in a table.
Input: table
Output: headerRows

1 for curRow ← 1; curRow ≤ 4; curRow + + do
2 if table .дetRow(curRow).isHeader () then
3 headerRows .add(curRow);
4 else
5 break;
6 end

same column headers (i.e., cells [B1:G1]). Based on this observation,
we merge two neighboring cell blocks that share the same row
headers or column headers. For the worksheet excerpt in Figure 4,
we merge cell block [A1:G5] and [A7:G8] into a new cell block
[A1:G8]. Finally, we obtain two tables, i.e., [A1:G8] and [A10:C14].

3.1.3 Header Identification. Header cells are used to describe other
cells in a table. For example, cells [B1:G1] and [A2:A8] are used to
describe data cells [B2:G8] in Figure 4. We use row header to denote
the header for a row, and column header to denote the header for a
column. Take table [A1:G8] in Figure 4 as an example. Cell A2 is
the row header of row 2, and indicates that cells [B2:G2] belong to
“Green”. Cell B1 is the column header of column B, and indicates
that cells [B2:B8] belong to “Week 1”.

We have three observations to identify row headers and column
headers in a table. (a) Row headers are usually located in the first
few (e.g., 4) columns, and column headers are usually located in the
first (e.g., 4) few rows. (b) Row headers in a table usually occupy
the whole columns, e.g., column A in table [A1:G8] in Figure 4.
Similarly, column headers in a table usually occupy the whole row.
(c) Row / column headers are usually label cells, e.g., cells [A2:A5]
in Figure 4. Note that, the only difference between row headers and
column headers is their directions. Thus, for clarity, we only use
column headers to explain our header identification algorithm.

Algorithm 1 shows how to identify column headers in a table. It
starts from the first row of the table, and then checks whether the
row contains at least one label cells, and all others cells are empty
(i.e., isHeader()). If yes, the label cells in the row can be considered
as column headers, and it further checks next row of the table, until

532

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yakun Zhang, Wensheng Dou, Jiaxin Zhu, Liang Xu, Zhiyong Zhou, Jun Wei, Dan Ye, and Bo Yang

we have checked the first four rows in the table. If no, the row can
not be considered headers, and the algorithm returns.

Note that, for a cell block discussed in the previous section, we
can identify its column headers, too. If we do not find the column
headers for a cell block, we further check its nearest cell block up-
Block on the top, and identify column headers of cell block upBlock
as its column headers.

Take the worksheet excerpt in Figure 4 as an example. For cell
block [A1:G5], Algorithm 1 identifies cells [B1:G1] as its column
headers. For cell block [A7:G8], Algorithm 1 does not find its column
headers. So, we further identify the column headers of its nearest
cell block on the top, i.e., cell block [A1:G5], and consider cells
[B1:G1] as its column headers.

3.2 Feature Extraction
We observe that structures and formats can effectively characterize
a table, and the clones always have similar structures and formats.

Given a table, LTC extracts 12 features of structures. Among
these 12 features, some (e.g., font color) are also used by existing
work [39], and some of them are unique to table clone detection,
e.g., row headers, column headers and formulas. For each table
pair, LTC computes a similarity score for each feature, and then
constructs a 12-value similarity vector to characterize whether this
table pair is a table clone. This similarity vector is further used in
training and prediction for table clone detection in Section 3.3.

3.2.1 Structure Features. Headers, formulas and cell types can rep-
resent the key structures of a table.

As described earlier, headers are used to describe the contents in
other cells in a table. For example in Figure 1a, header cell E1 means
that cells [E2:E7] are used to compute the total working hours for
each team member. Since column headers and row headers describe
different aspects of a table, we separate them into two features.

Column header (Feature #1):We use the header identification
approach in Section 3.1.3 to identify column headers. We denote
the column headers of table t as a set Ht , then the similarity score
simF 1 for column headers in two tables t1 and t2 is calculated as
follows:

simF 1 =
|Ht1 ∩ Ht2 |

|Ht1 ∪ Ht2 |
(1)

According to the formula, when two tables are identical and have
the same column headers, the similarity score simF 1 is 1. When two
tables are totally different and have no column headers in common,
the similarity score simF 1 is 0. Thus, the range of similarity score
for column headers is [0, 1].

Row header (Feature #2): Similar to column headers, we use
the header identification approach in Section 3.1.3 to identify row
headers, and then compute the similarity of row headers in two
tables in the same way as column headers.

Formula (Feature #3): Formulas in a table usually represent
the analyses of the data. Formulas in the corresponding cells among
table clones often have the different expressions in the A1 format2,

2Spreadsheet systems usually have two built-in formats to represent a cell reference:
A1 and R1C1 formats. In the A1 format, a cell at the x-th column and y-th row is
denoted as xy, e.g., D2. In the R1C1 format, a cell at m rows below and n columns right
to the current cell is denoted as R[m]C[n].

but the same expression in the R1C1 format. For example in Fig-
ure 1a, cells [E2:E7] have different formulas in the A1 format, but
have the same formula SUM(RC[−3]:RC[−1]) in the R1C1 format.
Therefore, we use formulas in the R1C1 format to represent the
computations in a table.

A R1C1 formula can be divided into two parts: operators and
input variables. Take the R1C1 formula SUM(RC[−3]:RC[−1]) in
Figure 1a as an example. Its operators are “SUM”, and its input
variables are RC[−3], RC[−2] and RC[−1]. We denote the operators
used by all formulas in a table t as a set OPt , and input variables as
a set Vart . The similarity score simF 3 is calculated as follows:

simF 3 = (
|OPt1 ∩OPt2 |

|OPt1 ∪OPt2 |
+
|Vart1 ∩Vart2 |

|Vart1 ∪Vart2 |
) ×

1
2

(2)

Our similarity computation for formulas can obtain high simi-
larity scores for similar formulas. Take formulas in Figure 1a and
Figure 1d as an example. The R1C1 formula of table in Figure 1a
is SUM(RC[−3]:RC[−1]). The R1C1 formula of table in Figure 1d
is SUM(RC[−2]:RC[−1]). We can see that they share the similar
computation. First, they have the same operator “SUM”. Second, for-
mula SUM(RC[−3]:RC[−1]) has three input variables (i.e., RC[−3],
RC[−2] and RC[−1]), and SUM(RC[−2]:RC[−1]) has two input vari-
ables (i.e., RC[−2] and RC[−1]). Their input variables are similar.
According to the above similarity computation formulas, their sim-
ilarity score is 5/6. We can see that, although they have different
formulas in Figure 1a and Figure 1d, their similarity score for for-
mulas is high.

Cell type (Feature #4): A table can contain label, formula, data
and empty cells. These cell types can reflect the content structure
of a table. By counting the proportion of the four cell types, we
can understand the organizational structure of a table. For table
clones, they usually share the similar cell type distributions. We
use a key-frequency list of < key, count > to represent the cell type
distribution in a table, where key is a cell type, and count shows
the occurrence count of type key. We use Lt to denote the key-
frequency list for cell types in a table t. The similarity score of cell
types simF 4 is calculated as follows.

simF 4 = 1 −
∑
x | f req(Lt1,x) − f req(Lt2,x)|∑
x | f req(Lt1,x) + f req(Lt2,x)|

(3)

In this formula, | f req(Lt1,x) − f req(Lt2,x)| denotes the fre-
quency difference for a cell type x, and f req(Lt1,x) + f req(Lt2,x)
denotes the frequency summarization for a cell type x. Intuitively,
more cells in two tables share with the same cell types, the smaller
frequency difference each cell type has, the higher similarity score
we can obtain.

3.2.2 Format Features. Format information is also the important
feature to help table clone detection.We observe that two tables that
share the similar formats are likely to be a table clone, for example,
bold borders, background colors and font-styles. Inspired by this
observation, we leverage various format features in our table clone
prediction model. We extract the following eight format features for
each cell: font color (Feature #5), font type (Feature #6), font
style (Feature #7), e.g., bold and italic, bottom border (Feature
#8), top border (Feature #9), left border (Feature #10), right
border (Feature #11), background color (Feature #12). Take
cell A2 in Figure 1a as an example, its font color is Black, its font

533

Learning to Detect Table Clones in Spreadsheets ISSTA ’20, July 18–22, 2020, Virtual Event, USA

type is Geneva, its font style is bold and italic, and it has right
border and top border, etc.

For each format feature, we analyze all cells in a table, and build
a key-frequency list of < key, count >, where key is a value for a
feature, and count shows the occurrence count of key. Then, we use
the similarity score calculation of the cell type feature to compute
the similarity score of each format feature in two tables, as shown
in Formula (3).

Note that, we do not consider a data cell’s value as a feature.
In spreadsheets, the values in a table have the similar role as the
inputs of a function in programming languages. Thus, the values
cannot usually reflect the computational semantics of a table. For
two tables in a table clone, they usually store different values, e.g.,
Figure 1a and Figure 1d. Identical values are only associated with
Type-1 clones, which can be effectively detected based on our cur-
rent features. Including the feature of values may be helpful for
identifying Type-1 clones. However, it may impact the accuracy
for identifying other three types of clones. Therefore, we do not
consider a data cell’s value as a feature.

3.2.3 Default Settings for Similarity Scores. For all 12 features, their
ranges of similarity scores are [0,1]. We observe that not all tables
have these 12 features. We need to set default similarity scores. If
both tables do not have certain feature, we set the default similarity
score of this feature as θboth . If one table does not have certain
feature but the other does, we set the default similarity core of this
feature as θone . According to our experiments in Section 4.2, when
θboth = 0.5 and θone = 0, LTC can obtain the best performance.

3.3 Training and Prediction
3.3.1 Training. To train a binary classifier for table clone detection,
we need a group of table clones and non table clones as our training
data. Since there is not such training data for table clone detection,
we sample a group of spreadsheets from the EUSES [24] and Enron
[26] corpora, which are the most widely used spreadsheet corpora.
We further manually identify all table clones and non table clones
in these spreadsheets. More details about training data can be found
in Section 4.

For each table clone or non clone, we analyze its tables by us-
ing the Apache POI library [2], and extract features of each ta-
ble. These features reflect the semantic characteristics of tables.
For each feature, we compute the similarity score of two tables
in a clone or non clone. Thus, we obtain a similarity vector of
12 similarity scores. Our training data can be denoted as a list of
< similarity_vector , label >, where label is 1 for table clones, and
0 for non table clones.

There are many popular classifiers. We set the chosen classifier
as parameter θmodel . According to our experiments (Section 4.2),
when we use Random Forest algorithm [14], LTC can obtain the
best performance. We use the open source machine learning library
scikit-learn [1] to train Random Forest classifier, under its default
setting.

3.3.2 Prediction. Given some spreadsheets, LTC first identifies all
the tables in it. It further removes tables with only one row / column,
since they contain very limited information and are hardly used for
table clones. LTC then enumerates all possible table pairs, and uses

the trained binary classifier to determine whether a table pair is a
table clone or not.

4 EXPERIMENTAL DESIGN
In this study, we address the following research questions.

RQ1:How effective is LTC in detecting table clones in spreadsheets?
RQ2:How is LTC comparedwith existing techniques, e.g., TableCheck?
RQ3: Is LTC robust on different datasets?
To answer RQ1, we evaluate LTC with the built ground truth

and analyze its performance. To answer RQ2, we evaluate LTC and
TableCheck with the built ground truth to compare their perfor-
mance. We further analyze the root causes of their performance
difference. To answer RQ3, we evaluate LTC on some larger datasets,
e.g., FUSE [10], EUSES [24] and Enron [26] and manually validate
the detected table clones.

4.1 Dataset Construction
4.1.1 Experimental Subjects. We select the EUSES [24] and Enron
[26] corpora as our experimental subjects. The EUSES corpus was
collected from Internet in 2005, and consists of more than 4,000
real-life spreadsheets of 11 categories, e.g., financial, grades and
modeling. Since its creation, it has been used by many spreadsheet
researches [7, 18, 19, 30, 52]. The Enron corpus was collected from
the Enron email archive within the Enron Corporation [38], and
contains more than 15,000 spreadsheets. Note that, the spreadsheets
in the Enron corpus were not categorized. These two corpora are
the most commonly used public industrial spreadsheet datasets.

Table clones are not documented during spreadsheet develop-
ment. To extract all table clones in spreadsheets, we need to inspect
all table pairs in them. Because we are not the authors of these
spreadsheets in EUSES and Enron, it is challenging to label table
clones for all their spreadsheets. Therefore, we randomly sample a
fixed number of spreadsheets from EUSES and Enron to manually
build the ground truth. In our experiments, we finally obtain 100
spreadsheets, in which, 50 spreadsheets are from EUSES and 50
spreadsheets are from Enron.

4.1.2 Sampling Process. To facilitate the labelling process, we built
an Excel plugin, in which participants can mark a region as a table,
and two tables as a clone pair in a visual manner. Participants can
further view and edit these labelled tables and clone pairs in the
plugin. All labelled results were stored in a spreadsheet, which can
be used in further analysis.

We build our ground truth through the following steps. (a) We
randomly chose a spreadsheet from the corresponding corpus, i.e.,
EUSES and Enron. We inspected all the worksheets in the sampled
spreadsheet for table clones. (b) EUSES and Enron contain multiple
versions of a spreadsheet [22, 50], which have very similar struc-
tures and contents. To guarantee the diversity of spreadsheets in
the ground truth, we excluded this spreadsheet, if it had almost the
same structures and contents with any previously selected one. (c)
A spreadsheet may contain multiple worksheets that have the same
or similar structures. To guarantee the diversity of table clones,
for the worksheets with the same or similar structures, we only
randomly kept two of them. We also removed worksheets, which
were empty or only contain figures. If no worksheet was left in a

534

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yakun Zhang, Wensheng Dou, Jiaxin Zhu, Liang Xu, Zhiyong Zhou, Jun Wei, Dan Ye, and Bo Yang

Table 2: Statistics of the Ground Truth

Corpus Category Spreadsheet Worksheet
Table clone

Non cloneType-1 Type-2 Type-3 Type-4 Total

EUSES

cs101 1 1 0 0 0 1 1 0
database 9 18 0 3 2 7 12 6
financial 12 27 2 84 4 44 134 1,349
forms3 1 2 0 6 4 4 14 239
grades 4 7 0 7 0 2 9 9
homework 4 6 7 11 1 8 27 397
inventory 3 5 0 5 1 10 16 72
jackson 3 9 6 9 4 12 31 596
modeling 12 32 1 21 13 32 67 456
personal 1 2 0 1 0 0 1 5
Total 50 109 16 147 29 120 312 3,129

Enron 50 107 12 95 53 178 338 7,086

Total 100 216 28 242 82 298 650 10,215

Table 3: Experimental Design

Corpus Spreadsheet
Table clone

Non cloneType-1 Type-2 Type-3 Type-4 Total

Training
EUSES 35 10 104 8 99 221 2635
Enron 35 10 57 19 153 239 5487
Total 70 20 161 27 252 460 8122

Testing
EUSES 15 6 43 21 21 91
Enron 15 2 38 34 25 99
Total 30 8 81 55 46 190

spreadsheet, we removed it from consideration. (d) For all remain-
ing worksheets in a spreadsheet, we manually identified all tables
in them, and further identified table clones among them. Note that,
we not only identify table clones in a worksheet but also among
worksheets. For each table clone, we further identified its clone type
according to the type categorization in Section 2.4. If a spreadsheet
did not contain any table clone, we removed it from consideration.
(e) We repeated the above sampling process until 50 spreadsheets
for EUSES and Enron were selected, respectively.

Note that it is challenging to manually compare all tables among
spreadsheets. Thus, we do not identify table clones among spread-
sheets. Meanwhile, having too many similar spreadsheets and work-
sheets can degrade the performance of our classification model. For
example, if a spreadsheet contains 10 similar worksheets and each
worksheet contains one table, we can identify 10*9/2=45 table clones
of the same family. These table clones can make our model bias
to the large table clone families. To address the problem, we re-
moved some spreadsheets and worksheets with the same or similar
structures.

To make our sampled spreadsheets and table clones accurate, the
first author and twomaster students carefully inspected the sampled
spreadsheets, and tried their best to understand the structures and
contents, and further identified tables and table clones. Note that,

16

147

29

120

12

95

53

178

0

50

100

150

200

Type-1 Type-2 Type-3 Type-4
EUSES Enron

Figure 5: Table clone type distribution in the ground truth.

we only explained the concepts of table and table clones to the two
master students, and did not tell them how LTC works. Finally, they
carefully cross-validated all identified tables and table clones.

4.1.3 Statistics of Ground Truth. Through the above sampling pro-
cess, we obtain 100 spreadsheets and identify 650 table clones.

Table clones: As shown in Table 2, the spreadsheets in our
ground truth are diverse: 50 spreadsheets cover ten categories in
EUSES, and 50 spreadsheets come from Enron. We can see that 82

535

Learning to Detect Table Clones in Spreadsheets ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 4: LTC Results on the Ground Truth

Corpus Spreadsheet Table clone Detected
TP

FP FNType-1 Type-2 Type-3 Type-4 Total

EUSES 15 91 86 5 41 19 19 84 2 7
Enron 15 99 93 2 36 32 21 91 2 8

Total 30 190 179 7 77 51 40
175 4 15

(97.8%) (2.2%) (7.9%)

(12.6%) and 298 (45.8%) table clones belong to Type-3 and Type-4,
respectively. This indicates that table clones with structure changes
are common (58.5%). Figure 5 further shows the distribution of table
clone types in the ground truth.

Non table clones: To train a Random Forest model, we need
a set of negative samples, i.e., non table clones. We first manually
identify all tables in a spreadsheet in our ground truth. Then, we
enumerate table pairs in each spreadsheet. If a table pair is a table
clone in our ground truth, we remove it from consideration. All
remaining table pairs are non table clones. As shown in Table 2, we
obtain 10,215 non table clones.

4.2 Experimental Setting
Training dataset (70 spreadsheets):We randomly select 35 spread-
sheets from EUSES and Enron in the ground truth, respectively. We
use all 460 table clones in these 70 spreadsheets as positive samples,
and all 8,122 non clones in these 70 spreadsheets as negative sam-
ples. The first part in Table 3 shows the statistics of spreadsheets
used in the training.

Testing dataset (30 spreadsheets): We use the remaining 30
spreadsheets to evaluate LTC. The second part in Table 3 shows
the statistics of spreadsheets used in the performance evaluation.
We compare LTC with TableCheck on these 30 spreadsheets, too.

Parameter setting: In our approach, two default similarity
scores θboth and θone in Section 3.2.3 should be determined. Their
candidate values can be 0, 0.5, and 1. The binary classifier model
θmodel in Section 3.3 should also be determined. The candidate
values for θmodel is Random Forest [14], SVM [34], NuSVC [37],
Decision Tree [47] and Logistic Regression [41].

We consider all candidate values of the three parameters, and
there are 45 (3*3*5) combinations in total. We use 10-fold cross-
validation in our training for each combination and calculate the
following accuracy indicators: precision, recall and F1-measure.
According to the experiment result, we obtain the following best
candidates: θboth = 0.5, θone = 0, and θmodel = Random Forest.

5 EXPERIMENTAL RESULTS
5.1 Table Clone Detection Results
We run LTC on the 30 spreadsheets in the testing set of Table 3.
Table 4 shows our table clone detection results. It gives the numbers
of detected table clones (Detected), and true table clones of each
type (TP/Type-1, 2, 3, 4) for the EUSES and Enron spreadsheets.

LTC reports 179 table clones in total, and 175 (97.8%) table clones
are true. LTC misses 15 table clones in the ground truth, i.e., the

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2 Contribution Score

Figure 6: Feature analysis. F1 to F12 correspond to the fea-
tures in Section 3.2.

recall for table clone detection is 92.1%. Thus, F1-measure of LTC
for table clone detection is 94.9%.

False positives of table clone detection: LTCwrongly detects
4 table clones (FP in Table 4). We further investigate the causes for
these false positives. There are two reasons for these false positives.
(1) Our table identification algorithm in Section 3.1 is imprecise.
First, end users may put some unrelated data and comments near
a table, and our table identification algorithm wrongly considers
these data and comments as a part of the table. Second, end users
may put multiple tables together, without being separated by empty
rows / columns. Thus, our table identification algorithm wrongly
considers them as a big table. Imprecise table identification causes
three false positives. A more precise table identification approach
can help improve LTC’s precision. (2) The learned classifier for
table clone detection may make wrong predication. In some cases,
the table pairs may have some similar features in cell fonts and cell
types, and the learned classifier wrongly considers them are table
clones. One false positive belongs to this case.

False negatives of table clone detection: LTC misses 15 table
clones (FN in Table 4). The reasons for the missed table clones
are the same as the false positives of table clone detection. First,
four false negatives are caused by imprecise table identification
algorithm, which does not identify the tables in the ground truth.
Second, the learned classifier wrongly considers table clones as non
table clones. Eleven false negatives belong to this case.

Feature analysis:Weuse ReleifFAttributeEval and Ranker evalu-
ator provided byWeka [5], to evaluate the importance of 12 features
in table clone detection. We adopt 10-fold cross validation approach
to do feature analysis in Weka, and the result is shown in Figure 6.
We can see that our 12 features all contribute to the table clone
detection. According to the contribution of each feature, the rank of

536

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yakun Zhang, Wensheng Dou, Jiaxin Zhu, Liang Xu, Zhiyong Zhou, Jun Wei, Dan Ye, and Bo Yang

Table 5: TableCheck Results on the Ground Truth

Corpus Spreadsheet Table clone Detected
TP

FP FNType-1 Type-2 Type-3 Type-4 Total

EUSES 15 91 30 5 9 0 0 14 16 77
Enron 15 99 26 2 5 0 0 7 19 92

Total 30 190 56 7 14 0 0
21 35 169

(37.5%) (62.5%) (88.9%)

contributions are as follows (from high to low): column header, row
header, formula, font bold, cell type, border top, font color, border
bottom, border left, background color, border right and font type.

Based on the above analyses, we can draw the following conclu-
sion to RQ1: LTC is effective in detecting table clones in spreadsheets.
The precision and recall for LTC is 97.8% and 92.1%, respectively.

5.2 Comparison with TableCheck
We compare LTC with TableCheck [18] on their table clone de-
tection capability. Note that, we do not compare LTC with data
clone detection [30], since a data clone is a pair of two numerical
cell blocks with (almost) the same values, which differs from table
clones.

TableCheck can only detect table clones with the same headers,
e.g., Type-1 and Type-2 table clones, and cannot detect Type-3 and
Type-4 table clones. TableCheck extracts table clones by grouping
cells with the same headers. First, TableCheck extracts row headers
and column headers for each numerical cell. Different from LTC,
TableCheck uses the nearest label cells as a cell’s row or column
headers. If a cell does not have row or column headers, TableCheck
excludes it from consideration. Second, TableCheck searches for
two cell blocks, in which all corresponding cells share the same row
and column headers. The table definition in TableCheck is different
from the common table concept used in existing studies [15, 17].
For example, cells January![A1:F5] in Figure 1a are considered as a
table. However, they are only a partition of table January![A1:F7].

We run TableCheck on the same 30 spreadsheets in the testing
set of Table 3, and compare LTC and TableCheck. Since the tables
detected by TableCheck do not contain headers, we append their
headers to the corresponding tables for fair comparison.

Table 5 shows the results detected by TableCheck on the 30
spreadsheets. TableCheck detects 56 table clones, and 21 of them
are true. Thus, TableCheck achieves a precision of 37.5%, recall of
11.1%, and F1-measure of 17.1%. Figure 7 shows the performance
comparison between LTC and TableCheck. As a comparison, LTC
achieves a precision of 97.8%, recall of 92.1%, and F1-measure of
94.9%. We further analyze why TableCheck performs worse than
LTC on these 30 spreadsheets.

False positives of TableCheck: TableCheck wrongly detects
35 table clones (FP in Table 5) on account of the incorrect identi-
fication of tables. For example, in Figure 1, January![A1:F7] and
March![A1:F7] form a Type-3 table clone. However, TableCheck
considers January![A1:F5] and March![A1:F5] as a table clone. Be-
cause the authors of TableCheck view these incomplete table clones
as true, the reported precision (92.2%) in that paper is higher [18].

97.8%
92.1% 94.9%

37.5%

11.1%
17.1%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Precision Recall F1-measure

LTC TableCheck

Figure 7: Performance comparison of LTC and TableCheck.

While, LTC first identifies tables in a spreadsheet, and further checks
whether a table pair can form a clone. Tables in the reported clones
by LTC are usually complete.

False negatives of TableCheck: TableCheck misses 169 table
clones (FN in Table 5). TableCheck misses 68 Type-1 and Type-
2 table clones. There are two reasons for these false negatives.
First, some cells in Type-1 and Type-2 table clones do not have
row headers or columns headers, and thus the table clones are ex-
cluded by TableCheck. Second, the header identification algorithm
in TableCheck does not identify headers correctly, thus missing
table clones. TableCheck misses all 101 Type-3 and Type-4 table
clones, since TableCheck requires that table clones have the same
headers and sizes. LTC utilizes 12 features in spreadsheets, and
learning-based similarity comparison approach to avoid these is-
sues faced by TableCheck. Thus, LTC is more universal, and has
less restrictions on table structures.

Based on the above analyses, we can draw the following con-
clusion to RQ2: LTC significantly outperforms TableCheck in table
clone detection. The precision and recall for TableCheck is 37.5% and
11.1%. As a comparison, the precision and recall for LTC is 97.8% and
92.1%, respectively.

5.3 Experiments on Large Datasets
To validate whether LTC is robust on other datasets, we further
use our trained model in RQ1 & RQ2 to evaluate LTC on more
spreadsheets from FUSE [10], Enron [26] and EUSES [24] corpora.

Experimental subject: FUSE [10] is the biggest spreadsheet
corpus so far, and contains about 250,000 spreadsheets. In this
experiment, we randomly choose 100 spreadsheets from EUSES,
Enron and FUSE, respectively.

We apply LTC to detect intra-spreadsheet table clones and inter-
spreadsheet table clones on these spreadsheets. Table 6 shows the

537

Learning to Detect Table Clones in Spreadsheets ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 6: Detection Results on Large Datasets

Spreadsheet Intra-spreadsheet clone Inter-spreadsheet clone

Corpus Total Sampled SS Clone Sampled TP Precison SS Clone Sampled TP Precision

EUSES 4,037 100 65 2,576 100 97 97.0% 43 1,156 100 86 86.0%
Enron 15,926 100 32 289 100 93 93.0% 62 1,332 100 94 94.0%
FUSE 249,376 100 50 1,397 100 98 98.0% 53 2,647 100 97 97.0%

Total 269,339 300 147 4,262 300 288 96.0% 158 5,135 300 277 92.3%

detection result. We detect 4,262 intra-spreadsheet table clones
(Intra-spreadsheet clone / Clone), and 5,135 inter-spreadsheet ta-
ble clones (Inter-spreadsheet clone / Clone) in these spreadsheets.
Among these 300 sampled spreadsheets, 147 (49%) spreadsheets
contain intra-spreadsheet clones (Intra-spreadsheet clone / SS),
and 158 (53%) spreadsheets contain inter-spreadsheet clones (Inter-
spreadsheet clone / SS). This also indicates that intra- and inter-
spreadsheet table clones are common in practice.

It is challenging to manually validate all detected table clones.
Thus, we randomly sample 100 inter-spreadsheet table clones and
100 intra-spreadsheet table clones for each corpus. We follow the
same manual inspection procedure described in Section 4.1.2 to
check whether they are true table clones. Table 6 shows the val-
idation result. We can see that, LTC can work well on inter- and
intra- spreadsheet table clone detection (Precision). LTC can achieve
higher (96.0%) precision on intra-spreadsheet table clone detection.
The precision of inter-spreadsheet table clone detection is 92.3%,
which is also promising. Thus, LTC can also be used to detect
inter-spreadsheet table clones.

Based on the above analyses, we can draw the following con-
clusion to RQ3: Table clones are common in real-world spreadsheets.
LTC can detect inter- and intra-spreadsheet table clones precisely.

6 THREATS TO VALIDITY
Our experiments are subject to several threats to validity.

Representativeness of experimental subjects. In our exper-
iment, we select EUSES, Enron and FUSE as our experimental sub-
jects, which have been widely used for many spreadsheet-related
studies [6, 18, 19, 25, 30]. We further randomly sample a group of
spreadsheets from EUSES and Enron. We believe that our sampled
spreadsheets are representative.

Ground truth and detection result validation. Since we can-
not contact the original authors of the spreadsheets in EUSES and
Enron to identify table clones, we have tomanually build the ground
truth of table clones by ourselves. To alleviate possible mistakes, the
first author and two master students carefully cross-validate all ta-
ble clones in the ground truth and the reported table clones by LTC
and TableCheck. In the future, we would like to use crowdsourcing
to build larger ground truth to improve LTC further.

7 RELATEDWORK
Here, we discuss related work that have not been discussed yet.

Code clone detection. Code clone detection techniques have
been widely studied in conventional programs. There are mainly
five types of clone detection techniques [13]. (1) Text-based clone

detection techniques [23] use line-based string matching to detect
clones. (2) Token-based clone detection techniques [9, 36, 43] tok-
enize program code, and use token comparison to detect clones. (3)
Tree-based clone detection techniques [12] parse programs into an
abstract syntax tree, and then detect clones by tree matching. (4)
Graph-based clone detection techniques [40] parse the programs
into program dependence graphs, and detect clones as identifying
isomorphic subgraphs. (5) Learning-based clone detection tech-
niques [42, 49] adopt machine learning techniques to detect clones.
The above code clone detection techniques cannot apply on spread-
sheets, since spreadsheets use a different programming model.

Spreadsheet evolution. Spreadsheets usually have a long life
cycle [27]. Based on spreadsheet filenames’ similarity, VEnron [22]
constructs the first versioned spreadsheet corpus, which can be used
for spreadsheet evolution studies. SpreadCluster [50] further adopts
machine learning to find versioned spreadsheets. However, these
corpora and approaches cannot be used for table clone detection
in spreadsheets. Our table clone detection approach can be used to
facilitate fine-grained spreadsheet reuse analyses.

Spreadsheet error detection. Spreadsheets contain various
errors [45, 46]. Therefore, many spreadsheet error detection ap-
proaches have been proposed. UCheck [7] can detect type inconsis-
tency errors in formulas. Hermans et al. proposed to detect inter-
worksheet smells [28], data clone related inconsistencies [30]. Am-
Check [19], CACheck [21], CUSTODES [16] and ExcelLint [11]
detect errors in similar cells. TableCheck [18] can detect inconsis-
tencies in Type-1 and Type-2 table clones. LTC can detect more table
clones (e.g., Type-3 and Type-4) precisely, and makes it possible to
detect errors in more types of table clones.

8 CONCLUSION
Table clones are widely used to perform similar business tasks in
spreadsheets. We observe that the tables in a table clone usually
share the similar structures and formats. Based on this observation,
we propose a learning-based approach, LTC, to detect table clones
with or without structure changes. Our experiments on real-world
spreadsheets from the EUSES and Enron corpora show that, LTC
can detect table clones effectively, and significantly outperforms
existing table clone detection techniques. In the future, we plan to
pursue the following research directions. First, we plan to detect
inconsistency errors among table clones detected by LTC. Second,
we plan to extract table templates based on table clones, and use
them in spreadsheet development. Third, we plan to evaluate LTC’s
practical effectiveness in companies, and explore new application
scenarios of table clones.

538

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yakun Zhang, Wensheng Dou, Jiaxin Zhu, Liang Xu, Zhiyong Zhou, Jun Wei, Dan Ye, and Bo Yang

ACKNOWLEDGEMENTS
We thank Shuo Wang and Jiahong Zhou for their contributions
in developing the Excel plugin for labelling. This work was par-
tially supported by National Key National Key Research and De-
velopment Program of China (2017YFB1001804), National Natural
Science Foundation of China (61702490), Microsoft Research Asia
Collaborative Research Program, Frontier Science Project of Chi-
nese Academy of Sciences (QYZDJ-SSW-JSC036), Youth Innovation
Promotion Association at Chinese Academy of Sciences, and Beijing
College Students’ Research Project of High-Level Cross Cultivation
of Undergraduate. Wensheng Dou is the corresponding author of
this paper.

REFERENCES
[1] 2007. scikit-learn: Machine learning in Python. Retrieved Jan 15, 2020 from

https://scikit-learn.org
[2] 2020. Apache POI - the Java API for Microsoft Documents. Retrieved Jan 15, 2020

from https://poi.apache.org/
[3] 2020. Ideas in Excel. Retrieved January 15,2020 fromhttps://support.office.com/en-

ie/article/ideas-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4
[4] 2020. Power BI | Interactive Data Visualization BI Tools. Retrieved Jan 15, 2020

from https://powerbi.microsoft.com
[5] 2020. Weka 3: Machine Learning Software in Java. Retrieved Jan 15, 2020 from

http://www.cs.waikato.ac.nz/ml/weka
[6] Robin Abraham and Martin Erwig. 2004. Header and unit inference for spread-

sheets through spatial analyses. In Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 165–172.

[7] Robin Abraham and Martin Erwig. 2007. UCheck: A spreadsheet type checker
for end users. Journal of Visual Languages and Computing 18, 1 (2007), 71–95.

[8] Robin Abraham, Martin Erwig, Steve Kollmansberger, and Ethan Seifert. 2005.
Visual specifications of correct spreadsheets. In Proceedings of IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 189–196.

[9] Brenda S Baker. 1995. On finding duplication and near-duplication in large
software systems. In Proceedings of Working Conference on Reverse Engineering
(WCRE). 86–95.

[10] Titus Barik, Kevin Lubick, Justin Smith, John Slankas, and Emerson Murphy-Hill.
2015. Fuse: A reproducible, extendable, internet-scale corpus of spreadsheets.
In Proceedings of Working Conference on Mining Software Repositories (MSR).
486–489.

[11] Daniel W. Barowy, Emery D. Berger, and Benjamin Zorn. 2018. ExceLint: Au-
tomatically finding spreadsheet formula errors. In Proceedings of International
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA). 148:1–148:26.

[12] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lor-
raine Bier. 1998. Clone detection using abstract syntax trees. In Proceedings of
International Conference on Software Maintenance (ICSM). 368–377.

[13] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
software engineering (TSE) 33, 9 (2007), 577–591.

[14] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[15] Zhe Chen and Michael Cafarella. 2014. Integrating spreadsheet data via accurate

and low-effort extraction. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD). 1126–1135.

[16] Shing-Chi Cheung, Wanjun Chen, Yepang Liu, and Chang Xu. 2016. CUSTODES:
Automatic spreadsheet cell clustering and smell detection using strong and weak
features. In Proceedings of International Conference on Software Engineering (ICSE).
464–475.

[17] Haoyu Dong, Shijie Liu, Shi Han, Zhouyu Fu, and Dongmei Zhang. 2019. Ta-
bleSense: Spreadsheet table detection with convolutional neural networks. In
Proceedings of AAAI Conference on Artificial Intelligence (AAAI). 69–76.

[18] Wensheng Dou, Shing-Chi Cheung, Chushu Gao, Chang Xu, Liang Xu, and Jun
Wei. 2016. Detecting table clones and smells in spreadsheets. In Proceedings of
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE). 787–798.

[19] Wensheng Dou, Shing-Chi Cheung, and Jun Wei. 2014. Is spreadsheet ambiguity
harmful? Detecting and repairing spreadsheet smells due to ambiguous compu-
tation. In Proceedings of International Conference on Software Engineering (ICSE).
848–858.

[20] Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei. 2018. Ex-
pandable group identification in spreadsheets. In Proceedings of International
Conference on Automated Software Engineering (ASE). 498–508.

[21] Wensheng Dou, Chang Xu, S. C. Cheung, and Jun Wei. 2017. CACheck: De-
tecting and repairing cell arrays in spreadsheets. IEEE Transactions on software

Engineering (TSE) 43, 3 (2017), 226–251.
[22] Wensheng Dou, Liang Xu, Shing-Chi Cheung, Chushu Gao, Jun Wei, and Tao

Huang. 2016. VEnron: A versioned spreadsheet corpus and related evolution
analysis. In Proceedings of International Conference on Software Engineering (ICSE).
162–171.

[23] Stéphane Ducasse, Oscar Nierstrasz, and Matthias Rieger. 2004. Lightweight
detection of duplicated code - A language-independent approach. Institute for
Applied Mathematics and Computer Science, University of Berne (2004).

[24] Marc Fisher and Gregg Rothermel. 2005. The EUSES spreadsheet corpus: A
shared resource for supporting experimentation with spreadsheet dependability
mechanisms. 30, 4 (2005), 1–5.

[25] Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou, Alaaeddin
Swidan, and David Hoepelman. 2016. Spreadsheets are code: An overview of
software engineering approaches applied to spreadsheets. In Proceedings of Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER).
56–65.

[26] Felienne Hermans and Emerson Murphy-Hill. 2015. Enron’s spreadsheets and
related emails: A dataset and analysis. In Proceedings of International Conference
on Software Engineering (ICSE), Vol. 2. 7–16.

[27] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2011. Supporting
professional spreadsheet users by generating leveled dataflow diagrams. In Pro-
ceedings of International Conference on Software Engineering (ICSE). 451–460.

[28] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2012. Detecting and
visualizing inter-worksheet smells in spreadsheets. In Proceedings of International
Conference on Software Engineering (ICSE). 441–451.

[29] Felienne Hermans, Martin Pinzger, and Arie Van Deursen. 2010. Automatically ex-
tracting class diagrams from spreadsheets. In Proceedings of European Conference
on Object-Oriented Programming (ECOOP). 52–75.

[30] Felienne Hermans, Ben Sedee, Martin Pinzger, and Arie van Deursen. 2013. Data
clone detection and visualization in spreadsheets. In Proceedings of International
Conference on Software Engineering (ICSE). 292–301.

[31] Felienne Hermans and Tijs van der Storm. 2015. Copy-paste tracking: Fixing
spreadsheets without breaking them. In Proceedings of International Conference
on Live Coding (ICLC).

[32] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of International Conference on Software Engineering (ICSE). 96–105.

[33] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. 2007. Context-based detection
of clone-related bugs. In Proceedings of Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on The Foundations of
Software Engineering (ESEC/FSE). 55–64.

[34] Thorsten Joachims. 1998. Text categorization with support vector machines:
Learning with many relevant features. In Proceedings of European Conference on
Machine Learning (ECML). 137–142.

[35] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. 2009. CloneDe-
tective - A workbench for clone detection research. In Proceedings of International
Conference on Software Engineering (ICSE). 603–606.

[36] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering (TSE) 28, 7 (2002), 654–670.

[37] Zaheer Ullah Khan,MaqsoodHayat, andMuazzamAli Khan. 2015. Discrimination
of acidic and alkaline enzyme using Chou’s pseudo amino acid composition in
conjunction with probabilistic neural network model. Journal of Theoretical
Biology 365 (2015), 197–203.

[38] Bryan Klimt and Yiming Yang. 2004. The Enron corpus: A new dataset for email
classification research. In Proceedings of European Conference on Machine Learning
(ECML). 217–226.

[39] Elvis Koci, Maik Thiele, Óscar Romero Moral, and Wolfgang Lehner. 2016. A
machine learning approach for layout inference in spreadsheets. In Proceedings
of International Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management. 77–88.

[40] Jens Krinke. 2001. Identifying similar code with program dependence graphs. In
Proceedings of Working Conference on Reverse Engineering (WCRE). 1095–1350.

[41] S Lee. 2005. Application of logistic regression model and its validation for
landslide susceptibility mapping using GIS and remote sensing data. International
Journal of Remote Sensing 26, 7 (2005), 1477–1491.

[42] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017.
CCLearner: A deep learning-based clone detection approach. In Proceedings
of International Conference on Software Maintenance and Evolution (ICSME). 249–
260.

[43] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner:
Finding copy-paste and related bugs in large-scale software code. IEEE Transac-
tions on software Engineering (TSE) 32, 3 (2006), 176–192.

[44] Ephraim RMcLean, Leon A Kappelman, and John P Thompson. 1993. Converging
end-user and corporate computing. Commun. ACM 36, 12 (1993), 78–90.

[45] Raymond R Panko. 2008. Spreadsheet errors: What we know. What we think we
can do. arXiv preprint arXiv:0802.3457 (2008).

539

https://scikit-learn.org
https://poi.apache.org/
https://support.office.com/en-ie/article/ideas-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4
https://support.office.com/en-ie/article/ideas-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4
https://powerbi.microsoft.com
http://www.cs.waikato.ac.nz/ml/weka

Learning to Detect Table Clones in Spreadsheets ISSTA ’20, July 18–22, 2020, Virtual Event, USA

[46] Stephen G. Powell, Kenneth R. Baker, and Barry Lawson. 2008. A critical review
of the literature on spreadsheet errors. 46, 1 (2008), 128–138.

[47] S Rasoul Safavian and David Landgrebe. 1991. A survey of decision tree classifier
methodology. IEEE Transactions on Systems, Man, and Cybernetics 21, 3 (1991),
660–674.

[48] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the numbers
of end users and end user programmers. In Proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). 207–214.

[49] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
International Conference on Automated Software Engineering (ASE). 87–98.

[50] Liang Xu, Wensheng Dou, Chushu Gao, Jie Wang, Jun Wei, Hua Zhong, and
Tao Huang. 2017. SpreadCluster: Recovering versioned spreadsheets through
similarity-based clustering. In Proceedings of International Conference on Mining
Software Repositories (MSR). 158–169.

[51] Liang Xu, Wensheng Dou, Jiaxin Zhu, Chushu Gao, Jun Wei, and Tao Huang.
2018. How are spreadsheet templates ssed in practice: A case study on Enron. In
Proceedings of ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). 734–738.

[52] Liang Xu, Shuo Wang, Wensheng Dou, Bo Yang, Chushu Gao, Jun Wei, and
Tao Huang. 2018. Detecting faulty empty cells in spreadsheets. In Proceedings
of International Conference on Software Analysis, Evolution and Reengineering
(SANER). 423–433.

540

	Abstract
	1 Introduction
	2 Table Clones in Spreadsheets
	2.1 Motivating Example
	2.2 Table Clones
	2.3 Potential Applications of Table Clones
	2.4 Table Clone Types
	2.5 Other Clones in Spreadsheets

	3 Learning-Based Table Clone Detection
	3.1 Table Identification
	3.2 Feature Extraction
	3.3 Training and Prediction

	4 Experimental Design
	4.1 Dataset Construction
	4.2 Experimental Setting

	5 Experimental Results
	5.1 Table Clone Detection Results
	5.2 Comparison with TableCheck
	5.3 Experiments on Large Datasets

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

